Dependencies

1/17/16
But first, the homework (Java threads)

class Task implements Runnable {
 public Task(...) { ... }
 public void run() { ... }
}

Thread t1 = new Thread(new Task(...));
Thread t2 = new Thread(new Task(...));
t1.start(); t2.start();
t1.join(); t2.join();
Instruction dependencies

• From instruction I_1 to I_2 there is a
 – Flow dependence (aka true dependence) if I_1 computes a value used by I_2
 – Anti-dependence if I_1 takes an operand from a register into which I_2 later stores a result
 – Output dependence if I_1 and I_2 use the same register to store their results
What dependence do the instructions $I_1: R_1 \leftarrow R_2 + R_3$ and $I_2: R_3 \leftarrow R_4 + R_5$ have?

A. A flow dependence
B. An anti-dependence
C. An output dependence
D. More than one of the above
E. None; the instructions are independent
What dependence do the instructions $I_1: R_1 <- R_2 + R_3$ and $I_2: R_3 <- R_4 + R_5$ have?

A. A flow dependence
B. An anti-dependence (register R_3)
C. An output dependence
D. More than one of the above
E. None; the instructions are independent
What dependence do the instructions $I_1: R_1 <- R_2 + R_3$ and $I_2: R_1 <- R_1 + R_4$ have?

A. A flow dependence
B. An anti-dependence
C. An output dependence
D. More than one of the above
E. None; the instructions are independent
What dependence do the instructions \(I_1: R_1 \leftarrow R_2 + R_3 \) and \(I_2: R_1 \leftarrow R_1 + R_4 \) have?

A. A flow dependence (on \(R_1 \))
B. An anti-dependence
C. An output dependence (on \(R_1 \))
D. More than one of the above
E. None; the instructions are independent
Task graphs

• Representation of higher-level dependencies
 – nodes = strands (serial parts w/o parallel constructs)
 – edges = showing which strands must complete first
Draw a dependence graph for heat diffusion on domain \(\begin{array}{ccc}
A & B & C \\
D & E & F
\end{array} \) where \(X_1, X_2, \ldots \) are updates for \(X \)

1) For the serial algorithm
Draw a dependence graph for heat diffusion on domain \[
\begin{array}{ccc}
A & B & C \\
D & E & F \\
\end{array}
\] where \(X_1, X_2, \ldots\) are updates for \(X\)

2) For the SimpleExecutor version
Draw a dependence graph for heat diffusion on domain where X_1, X_2, \ldots are updates for X

3) For the version using Thread and CyclicBarrier
Draw a dependence graph for heat diffusion on domain

\[
\begin{array}{ccc}
A & B & C \\
D & E & F \\
\end{array}
\]

where \(X_1, X_2, \ldots\) are updates for \(X\)

4) For the inherent problem (what \textit{could} be done in parallel?)
Draw a dependence graph for heat diffusion on domain where X_1, X_2, \ldots are updates for X

5) For this proposed implementation:

```java
//in runSim:
...
for(int i=0; i<timeSteps; i++) {
    TSTask t = new TSTask(); //update data for //entire grid
    e.submit(t);
}
```