MPI again

2/17/16
How can MPI collective operations create deadlock?
Which of the following causality claims is true about MPI?

I. Broadcasts with the same root process will always be received in the order they are sent

II. Send operations between the same pair of processes will arrive in the order they are sent

III. A send operation made after participating in a broadcast will always be received after that broadcast

A. I only  B. II only  C. III only
D. I and II only  E. I, II, and III
Which of the following causality claims is true about MPI?

I. Broadcasts with the same root process will always be received in the order they are sent

II. Send operations between the same pair of processes will arrive in the order they are sent

III. A send operation made after participating in a broadcast will always be received after that broadcast

A. I only  B. II only  C. III only  
D. I and II only  E. I, II, and III
Which of the following is NOT an advantage of using MPI collective communication operations over writing your own patterns?

A. Using collective operations is less work for the programmer
B. Collective operations make it easier to change the ranks involved in an operation
C. Collective operations can run faster than an optimized implementation using sends and recvs
D. The version with collective operations is easier to port to different systems
E. Not exactly one of the above
Which of the following is NOT an advantage of using MPI collective communication operations over writing your own patterns?

A. Using collective operations is less work for the programmer
B. Collective operations make it easier to change the ranks involved in an operation
C. Collective operations can run faster than an optimized implementation using sends and recv
D. The version with collective operations is easier to port to different systems
E. Not exactly one of the above (all true)
Using MPI, write pseudocode realizing the following dependence graph: