From loops to threads

2/3/16
Announcements

• HW 3 due NOW!

• For Monday, read the rest of Chapter 6

• Midterm
 – Topics: Programming using tasks and threads, dependence graphs, reductions (and other patterns), topologies, everything else
 – No class Friday
Linearizing multi-dimensional arrays

• cudaMemcpy only transfers 1D arrays
• need to represent 2D array:

in a 1D form:

cell \(y \times \text{row} _\text{length} + x \)
What is the 1D index of the cell below the cell with 1D index i?

A. $i + 1$
B. $i + 4$
C. $i + \text{row_length}$
D. $i \times \text{row_length} - 1$
E. Insufficient information to determine it
What is the 1D index of the cell below the cell with 1D index i?

A. i + 1
B. i + 4
C. i + row_length
D. i * row_length - 1
E. Insufficient information to determine it
Which test will determine if the cell with 1D index i is on the right edge (of the 2D matrix)?

A. \(i \% \text{row_length} == 0 \)
B. \(i \% \text{col_length} == 0 \)
C. \(i + \text{row_length} > \text{row_length} * \text{col_length} \)
D. \(i \% \text{row_length} == \text{row_length} - 1 \)
E. None of the above
Which test will determine if the cell with 1D index i is on the right edge (of the 2D matrix)?

A. $i \% \text{row_length} == 0$
B. $i \% \text{col_length} == 0$
C. $i + \text{row_length} > \text{row_length} \times \text{col_length}$
D. $i \% \text{row_length} == \text{row_length} - 1$
E. None of the above