3/29/24

(Using slides adapted from the book)

- "Machine" to decide whether to accept a string
 - States: Circles; where the computation can be
 - Start state (w/ unlabeled incoming arrow) is where it begins
 - Machine reads the characters one at a time and follows corresponding arrows (*transitions*)
 - At end of input, accepts if in double-circled state (an accepting state) and rejects otherwise (i.e. if in non-accepting state)

What strings does this machine accept?

This DFA accepts {*xa* | *x* ∈ {*a,b*}*}
"words ending in a"

• This DFA accepts $\{xa \mid x \in \{a,b\}^*\}$

"words ending in a"

 Labels can be added, but they have no effect, like program comments:

A DFA Convention

• We don't draw multiple arrows with the same source and destination states:

Instead, we draw one arrow with a list of symbols:

DFAs Define Languages

- Given any string over Σ , a DFA can read the string and follow its state-to-state transitions
- At the end of the string, if it is in an accepting state, we say it accepts the string
- Otherwise it rejects
- The language defined by a DFA is the set of strings in Σ^* that it accepts. To identify this:
 - Show every word in the language is accepted
 - Show every accepted string is in the language

A Classic Riddle

- A man must cross river with wolf, goat and cabbage
- Has rowboat w/ room for man plus one possession
- If left alone together:
 - Wolf eats goat
 - Goat eats cabbage

How can the man cross without loss?

Solutions As Strings

- Four moves can be encoded as four symbols:
 - Man crosses with wolf (w)
 - Man crosses with goat (g)
 - Man crosses with cabbage (c)
 - Man crosses with nothing (*n*)
- Then sequence of moves is a string, such as *gnwgcng*:
 - First cross with goat, then cross back with nothing, then cross with wolf, ...

Moves As State Transitions

- Each move takes our puzzle universe from one state to another
- For example, the *g* move is a transition between these two states:

The Language Of Solutions

- Every path gives some $x \in \{w,g,c,n\}^*$
- The diagram defines the language of solutions to the problem:

 $\{x \in \{w,g,c,n\}^* \mid \text{ starts in start state and ends in goal state}\}$

- This is an infinite language
 - (The two shortest strings are *gnwgcng* and *gncgwng*)

Diagram Gets Stuck

- On many strings that are not solutions, the previous diagram gets stuck
- Automata that never get stuck are easier to work with
- We'll need one additional state to use when an error has been found in a solution

Complete Specification

- The diagram shows exactly one transition from every state on every symbol in $\boldsymbol{\Sigma}$
- It gives a computational procedure for deciding whether a given string is a solution:
 - Start in the start state
 - Make one transition for each symbol in the string
 - If you end in the goal state, accept; if not, reject

Designing a DFA

- Think about how to identify words in the language, looking at input one char at a time
 - What do you have to remember?
- These become the states
- Then add transitions to update "memory"

Work design examples

Application

- Write a program to count "real" lines of Java code
 - Ignore blank lines, lines with only a comment (// or /* ... */)
- Assume you can read the input one char at a time