
Welcome to CS 141
Spring 2024

Who and what will be helping you learn Computer Science?
How will you learn this Computer Science?

What we’re doing

This course teaches problem solving on a computer. We will be using
the Java programming language, but the point of the class is not just
to learn Java. Rather, you are learning how to express what you want
the computer to do, with Java being the specific language you’re
using. My goal is to teach programming as a tool for use in Computer
Science or your own field.

People

Professors:
David Bunde (dbunde@knox.edu, SMC E203)
Michael Gerten (mgerten@knox.edu, SMC E206)

TAs: Cole Andrews, Fazil Kagdi, Tim Lorenz, Eita Ueda

Can also get questions answered by Red Room tutors, others who have taken the class…

mailto:dbunde@knox.edu
mailto:mgerten@knox.edu

Grading and stuff

45% for exams (in class, on paper)
2 during the term and a final, 15% each
all are open notes (no computer use allowed)

10% for participation in “iClicker questions”

20% for questions in interactive textbook
10% for participation activities
10% for challenge activities

25% homework:
mostly week-long programming projects, started during the weekly lab

Labs on Tuesday

● Lab period on Tuesday is for getting started with new material when help is easily available
○ You’ll be starting your HW assignment for the week

● It will generally and most likely take you a lot more than 1 hour to complete
○ Whatever you don’t finish becomes your homework for the week
○ Finish each lab by the next Tuesday

● We will check in with each student during the lab
○ To make sure you can get started, that you have things installed, that you make some progress

From Paulo Freire’s Pedagogy of the Oppressed

Education thus becomes an act of depositing, in which the students are the
depositories and the teacher is the depositor. Instead of communicating, the
teacher issues communiques and makes deposits which the students patiently
receive, memorize, and repeat. This is the "banking' concept of education, in
which the scope of action allowed to the students extends only as far as
receiving, filing, and storing the deposits.

There is lots of evidence that the “banking deposit model” of education works very poorly!

http://www2.webster.edu/~corbetre/philosophy/education/freire/freire-2.html

This class is (mostly) a “flipped class”
We are moving what usually happens inside class
(lecture on the basic outline of things) to before class,

and the stuff that usually happens outside class
(homework covering harder stuff) into class.

Why are we doing this?

Class looks like this!
Everyone is together
but we’re learning the
easier basic stuff!

Homework looks like this!
I’m alone and this work is tough!

What does learning look like?

● Learning takes effort, practice, discussion, reflection

● Learning is active, not passive

● Learning is sometimes solitary, but is often social

● Education is a process, not a result

● Knowledge is not knowing the right answer,
but rather knowing how to construct new knowledge

● Answer for yourself (1-2 mins)
● Discuss with small group (2-3 mins)
● Answer again based on consensus of group
● See how everyone else voted
● Go over each answer
● Answer questions
● Mini-lecture

iClicker question workflow

● Answer for yourself (1-2 mins)
● Discuss with small group (2-3 mins)
● Answer again based on consensus of group
● See how everyone else voted
● Go over each answer
● Answer questions
● Mini-lecture

iClicker question workflow

“iClicker” questions are graded on
participation ONLY!

You can miss 3 classes without losing any
points on your clicker questions.

Now let’s practice
“iClicker” questions!

Which of the following will most contribute to
your learning in this class?

A. Reading interactive textbook

B. Attending and participating in class

C. Completing lab assignments

D. Studying for and taking tests

E. Asking questions in office hours and Red Room

We are going to program in Java

Programming: writing out sequences of commands for the
computer to carry out

Java is a high-level programming language
believe it or not, there are lower-level languages that are much harder for humans to read

DEMO of first program in BlueJ IDE

Big Oof…

Okay… BlueJ is trying to be helpful but
that’s a little too much too fast.

The actual code is just one line:
 System.out.println("Hello, World!");

Function with a name and an input like f(x)
• f is System.out.println
• x is “Hello, World!”
• We are passing x as input to f(), to get f(x)
• Similarly, we are passing “Hello, World!” as input to System.out.println()

You must unlearn what you have learned about grammar

Computer programming languages use grammatical symbols as pure
symbols that mean different things in a programming context than they
would in plain English.

This may contradict everything you’ve learned about English grammar
your whole life.

Computer Science is not commonly taught in high school

Most students have a general idea of what math is,
what chemistry is,
what history is,
…

Computer Science? Not so much.

Some conventions
• we count from zero:

first element is 0th element, it is at position zero (this will matter later)

• we follow language-specific syntax
• Java statements end with a semicolon
• classes, methods, if statements, and loops are surrounded by curly braces { } ß we’ll discuss this more later

• how code looks matters
• bad looking code may break your program (python)
• if it doesn’t break your program, it will still break your programming/debugging
• so what’s some good looking code?

• meaningful variable names
• clear helpful comments
• consistent and correct indentation
• consistent spacing meaningfully grouping chunks of code

Some conventions
• we count from zero:

first element is 0th element, it is at position zero (this will matter later)

• we follow language-specific syntax
• Java statements end with a semicolon

• classes, methods, if statements, and loops are surrounded by curly braces { }

• how code looks matters
• bad looking code may break your program (python)

• if it doesn’t break your program, it will still break your programming/debugging

• so what’s some good looking code?

• meaningful variable names
• clear helpful comments
• consistent and correct indentation

• consistent spacing meaningfully grouping chunks of code

Turns out that was actually
some great looking code!

Variables: containers for our data

If we couldn’t store values with a programming language,
it would be difficult to do any computation:
§ calculate things
§ recall stored data
§ change data
§ etc.

Java is strongly-typed
• strongly-typed :

you need to declare the datatype of each variable when you create it

• We start with 3 datatypes:
• String (capitalization matters in Java)
• int
• double

datatypes
• String can store strings of characters

• can be as long as the computer has memory to hold!
• MUST start with a capital; it’s special à a class; we’ll discuss this more later

• int can store integers from -2 billion to 2 billion, approximately
• larger numbers are stored in a separate type called "long"
• we won't use anything larger than an int in CS-141

• double can store decimal numbers
• double is short for "double-precision floating point"
• floating-point basically means "scientific notation" where we "float" the decimal point

around by changing exponents (you don't need to know that, it's just trivia)

datatypes
• String can store strings of characters

• can be as long as the computer has memory to hold!
• MUST start with a capital; it’s special à a class; we’ll discuss this more later

• int can store integers from -2 billion to 2 billion, approximately
• larger numbers are stored in a separate type called "long"
• we won't use anything larger than an int in CS-141

• double can store decimal numbers
• double is short for "double-precision floating point"
• floating-point basically means "scientific notation" where we "float" the decimal point

around by changing exponents (you don't need to know that, it's just trivia)

What’s up with that capitalization?
primitive types à lowercase
reference types à uppercase

String holds characters, such as “It’s over 9000!!!”

String myString = “Hello, World!”;//make a new String with a value
myString = myString + “!!”; //we change that value

//we can print literals and variables to screen
System.out.print(“My string was: ” + myString + “ Over and out.”);

Output: My string was: Hello, World!!! Over and out.

note on syntax:
String variables (mystring) and String literals (“Hello, World!”) are both of type String
String types can be concatenated with +

variables of type String

variables of type int
int holds integer values (… -2, -1, 0, 1, 2, …)

note on syntax:
we can declare and initialize
or
declare only and initialize later

variables of type double
double d1 = 6.725; // double can store decimal numbers

double d2=6; // ints can be “promoted” to double

note on syntax:
space after type is mandatory, while space between (variable
or literal) and (operand or semicolon) is optional
(just try to be consistent, for aesthetic reasons)

Our programs and variables need names, identifiers,
so we can refer to them as needed

• must start with a letter (upper or lowercase) or _ (underscore)
• followed by zero or more letters, digits, _
• variable names start with lower case
• uppercase is reserved for classes (such as class MyProgram and String);

we’ll talk more about classes a bit later in the course)

Which of these are not legal identifiers?

A: FiveGuysBurgerCalorieCalculator
B: 5GuysBurgerCalorieCalculator
C: Five_guys_burger_calorie_calculator
D: all of the above
E: none of the above

Which of these are not legal identifiers?

A: FiveGuysBurgerCalorieCalculator
B: 5GuysBurgerCalorieCalculator Identifiers cannot start with a digit!
C: Five_guys_burger_calorie_calculator
D: all of the above
E: none of the above

Which of these are not legal identifiers?

A: DR_WHO
B: _DR_WHO_
C: DR WHO
D: all of the above
E: none of the above

Which of these are not legal identifiers?

A: DR_WHO
B: _DR_WHO_
C: DR WHO Identifiers cannot have spaces!
D: all of the above
E: none of the above

Which of these are not legal identifiers?

A: smileyFace:)
B: smiley:)Face
C: :)smileyFace
D: all of the above
E: none of the above

Which of these are not legal identifiers?

A: smileyFace:)
B: smiley:)Face
C: :)smileyFace
D: all of the above Identifiers can only contain letters, digits, and underscores.
E: none of the above

mixing doubles and ints
// will this work?
int x = 6.7;

A: yes
B: no
C/D/E: I have no idea

mixing doubles and ints
// will this work?
int x = 6.7;

A: yes
B: no This will not work because 6.7 is not an int.
C/D/E: I have no idea

mixing doubles and ints
// will this work?
int x = 6.0;

A: yes
B: no
C/D/E: no idea

mixing doubles and ints
// will this work?
int x = 6.0;

A: yes
B: no
C/D/E: no idea

It doesn't matter that 6.0 is technically 6; for safety reasons, Java will never
convert a double to an int unless you explicitly say it's OK with a (cast)

Let’s see how next!

Casting: turning one type into another
Widening Casting or Type Promotion (automatic): converting a larger type; no loss of precision
byte à short à char à int à long à float à double

 double myDouble = 5; //auto promoted to 5.0

Narrowing Casting or Downcasting (manual via parens): converting to a smaller type; loss of precision)
double à float à long à int à char à short à byte

 double myDouble = 6.7;
 int myInt = (int)myDouble; // manually downcast to 6

mixing doubles and ints
// will this work?
int x = (int)6.0;

A: yes
B: no
C/D/E: no idea

mixing doubles and ints
// will this work?
int x = (int)6.0;

A: yes We are forcing a manual downgrade of double to int.
B: no
C/D/E: no idea

What will this print?
int x = (int)6.7;
System.out.println(x);

A: 6
B: 7
C: 6.0
D/E: no idea

What will this print?
int x = (int)6.7;
System.out.println(x);

A: 6
B: 7
C: 6.0
D/E: no idea

The (int) part is a cast that forces a conversion.
Casts truncate (i.e. round down).

Operators let us operate on variables

so far we’ve seen the Assignment operator =

 int x = 5;

and the typecasting operator (datatype)

 int x = (int)5.0;

Arithmetic operations
All of the arithmetic operations you learned in math also work in Java

+ - * /

What does this print?
int x = 4 + 3 * 6;
System.out.println(x);

A: 42
B: 22
C: 0
D: x
E: none of the above

What does this print?
int x = 4 + 3 * 6;
System.out.println(x);

A: 42
B: 22
C: 0
D: x
E: none of the above

Order of operations works the same way as in math!

* and / before + and -

PEMDAS:
parentheses,
exponents,
multiplication/division,
addition/subtraction

What does this print?
int num = 4 / 5 * 100 + 2;
System.out.println(num);

A: 2
B: 22
C: 42
D: 82
E: none of the above

What does this print?
int num = 4 / 5 * 100 + 2;
System.out.println(num);

A: 2 4 / 5 = 0 (integer division!)
B: 22
C: 42
D: 82
E: none of the above

What does this print?
double a = 5;
double b = a / 10 * 20;
System.out.println(b);

A: 0.0
B: 5.0
C: 10.0
D: 0.05
E: none of the above

What does this print?
double a = 5;
double b = a / 10 * 20;
System.out.println(b);

A: 0.0
B: 5.0
C: 10.0
D: 0.05
E: none of the above

What does this print?
double d = 8 / 10;
System.out.println(d);

A: d
B: 0.8
C: 0
D: 2
E: it will crash and throw an exception

What does this print?
double d = 8 / 10;
System.out.println(d);

A: d
B: 0.8
C: 0
D: 2
E: it will crash and throw an exception

8 and 10 are both ints, so clearly you
must have wanted Integer division!
10 divides into 8 zero times!

LHS assignment portion is independent
of the RHS calculation portion.

How can we get 0.8?
A: double d = 8.0 / 10.0;
B: double d = 8.0 / 10;
C: double d = 8 / 10.0;
D: all of the above
E: none of the above

How can we get 0.8?
A: double d = 8.0 / 10.0;
B: double d = 8.0 / 10;
C: double d = 8 / 10.0;
D: all of the above
E: none of the above

Increment operators: ++, +=
Java has a lot of shorthand operations.

If x is an int:
 x++;
 x+=1;
 x=x+1;

these all do the same thing:
increment x by 1

Increment operators: --, -=
Java has a lot of shorthand operations.

If x is an int:
 x--;
 x-=1;
 x=x-1;

these all do the same thing:
decrement x by 1

Have you heard of the programming language C++?

This is a pun of sorts, because C++ is an improvement to C.

So they did a ++ of C and got C++.

This is what passes for humor around here!

mod or modulo operation
We saw that using / with integers performs integer division,
which only keeps the quotient and ignores the remainder.

What if we want to keep the remainder?

We can use the % sign to perform the mod operation,
which returns only the remainder.

7.0 / 4 is 1.75 (because 4 is auto-promoted to double)
 7 / 4 is 1 (because of integer division)
 7 % 4 is 3 (because 4 goes into 7 one time, with a remainder of 3)

mod
What is 6 % 8?

A: 0
B: 1
C: 2
D: 6
E: 8

mod
What is 6 % 8?

A: 0
B: 1
C: 2
D: 6 8 goes into 6 zero times, with a remainder of 6
E: 8

X % 7
We don't know what X is, but we know it’s positive.
What is the maximum possible result?

A: 0
B: 1
C: 6
D: 7
E: 8

X % 7
We don't know what X is, but we know it’s positive.
What is the maximum result?

A: 0
B: 1
C: 6
D: 7
E: 8

If we mod by 7, we get values from 0 to 6.
We could never get a result of 7
(having a remainder of 7, we could have just added 1 to the quotient, going
back to a remainder of 0)

DONE!

