Math and Tree review

Comparing functions asymptotically

- Look at the ratio of the functions $\frac{f(n)}{g(n)}$
- If this ratio gets arbitrarily large, f >> g
- If this ratio gets arbitrarily small, f << g
- If it's bounded, they're asymptotically equal

Recall: Logarithms

 $\log_b x = "\log base b of x"$

- = power of b that gives x
- = number of times you can divide x by b before getting 1

 $2^{0} = 1 \text{ so } \log_{2} 1 \text{ is } 0$ $2^{1} = 2 \text{ so } \log_{2} 2 \text{ is } 1$ $2^{2} = 4 \text{ so } \log_{2} 4 \text{ is } 2 \text{ (and } \log_{2} 3 \text{ is between } 1 \& 2)$

Properties of logarithms

- $\log_b xy = \log_b x + \log_b y$
- $\log_b (x/y) = \log_b x \log_b y$

•
$$\log_b x^y = y \log_b x$$

• $\log_b a = \frac{\log_c a}{\log_c b}$ for any c

Properties of logarithms

- $\log_b xy = \log_b x + \log_b y$
- $\log_b (x/y) = \log_b x \log_b y$

•
$$\log_b x^y = y \log_b x$$

• $\log_b a = \frac{\log_c a}{\log_c b}$ for any c

Order the following from smallest to largest (asymptotically):

n, 2n, $\log_2 n$, $\log_3 n$, $3^{\log_2 n}$, 2^n , n^2 , $n \log_2 6$ Note which are asymptotically the same