Balanced Binary Search Trees

Recall: Binary Search Trees (BSTs)

* Tree with key stored at each node such that
— Every node has 2 children (left and right)

e Children can be null (nodes have 0, 1, 2 actual children)

— All keys in a node’s right subtree are greater than
its key and all in the left subtree are less

<X > X

Key property: Height

* BST height: Max # edges on root-to-leaf path
* Insert, delete, contains all run in O(height)

Key property: Height

* BST height: Max # edges on root-to-leaf path
* Insert, delete, contains all run in O(height)
* O(log n) < height of n-node BST < n-1:

AR %

Key property: Height

* BST height: Max # edges on root-to-leaf path
* Insert, delete, contains all run in O(height)
* O(log n) < height of n-node BST < n-1:

AR %

* A tree is balanced if its height is O(log n)

Full binary tree

* Every interior node (i.e. non-leaf) has 2 children
and all leaves are on the same level

Full binary tree

* Every interior node (i.e. non-leaf) has 2 children
and all leaves are on the same level

How many nodes are in a full binary tree of height 3?
A. 7

B. 13

16

. 27

None of the above

m o O

Full binary tree

* Every interior node (i.e. non-leaf) has 2 children
and all leaves are on the same level

How many nodes are in a full binary tree of height 3?
A. 7

13

16

. 27

None of the above (15)

moonw

Claim: A full binary tree of height h has
211 nodes

Claim: A full binary tree of height h has
211 nodes

Corollary: A binary tree with n nodes has
height Q(log n)

Claim: A full binary tree of height h has
211 nodes

Corollary: A binary tree with n nodes has
height Q(log n)
Pf: n<=2M1-1
n+1 <= 2h+1

0g, (n+1) <=log, 2"! = h+1

n >=1log, (n+1) — 1 = Q(log n)

Induction framework

* Base case(s):

— claim is true for one or more small values

* Induction hypothesis (IHOP)

— assume claim is true up to some point

* Induction step

— show that claim holds for next value (using IHOP)

Prove that 1+2+3+...+n = n(n+1)/2

* Be sure to:
— Clearly mark the IHOP and when it’s used

— Work from one side (typically the left) and get the
other side; don’t perform operations on both
sides

Prove using induction: A full binary
tree of height h has 2"*1-1 nodes

Use induction to prove that a binary
tree with n (= 1) nodes has n-1 edges

Use induction to prove that a binary
tree with n (= 1) nodes has n-1 edges

Need strong induction: Assume claim holds for
all smaller values

Fibonacci numbers

0F1=

* I:n = I:n-l'l' I:n—2

Fibonacci numbers

AVL trees

Height of an arbitrary node

* Height of a node is the height of the subtree
rooted at that node

AVL tree

[Adelson-Velsky and Landis, 1962]
* |eft height = height if first step must go left
* right height = height if first step must go right

* balance of a node: left height — right height

AVL tree

[Adelson-Velsky and Landis, 1962]
left height = height if first step must go left
right height = height if first step must go right

balance of a node: left height — right height

AVL tree: Every node has balance in {0,+1,-1}

w, = # nodes in smallest AVL tree of height h

w, = # nodes in smallest AVL tree of height h

What is w,?

A. 9

B. 12

C. 15

D. 18

E. None of the above

w, = # nodes in smallest AVL tree of height h

What is w,?

A. 9

B. 12

C. 15

D. 18

E. None of the above

w, = # nodes in smallest AVL tree of height h

wy =1
w, =2
Whp =1+ W+ Wy,

w, = # nodes in smallest AVL tree of height h

wy =1
w, =2
Whp =1+ W+ Wy,

C|a|m Wh — Fh+3 —1

w, = # nodes in smallest AVL tree of height h

wy =1
w, =2
Whp =1+ W+ Wy,
¢
Claim: w, =F, ;-1 |
h+3 n _n
>¢\/§ _9 Fn:15((1+2\/§) _(1 fo5)>

w, = # nodes in smallest AVL tree of height h

wy =1
w, =2
Whp =1+ W+ Wy,
¢
Claim: w, =F, ;-1 |
h+3 n _n
>¢\/§ _9 Fn:15((1+2\/§) _(1 fo5)>

h = O(Iogqb n)

w, = # nodes in smallest AVL tree of height h

wy =1
w, =2
Whp =1+ W+ Wy,
¢
Claim: w, =F, ;-1 |
h+3 n _n
>¢\/§ _9 Fn:15((1+2\/§) _(1 fo5)>
h =0O(logy n)

h=0(1.44... log, n)

