
Balanced Binary Search Trees

9/12/24

Recall: Binary Search Trees (BSTs)

• Tree with key stored at each node such that
– Every node has 2 children (left and right)
• Children can be null (nodes have 0, 1, 2 actual children)

– All keys in a node’s right subtree are greater than
its key and all in the left subtree are less

x

> x< x

• BST height: Max # edges on root-to-leaf path
• Insert, delete, contains all run in O(height)

Key property: Height

• BST height: Max # edges on root-to-leaf path
• Insert, delete, contains all run in O(height)
• O(log n) ≤ height of n-node BST ≤ n-1:

Key property: Height

• BST height: Max # edges on root-to-leaf path
• Insert, delete, contains all run in O(height)
• O(log n) ≤ height of n-node BST ≤ n-1:

• A tree is balanced if its height is O(log n)

Key property: Height

Full binary tree

• Every interior node (i.e. non-leaf) has 2 children
and all leaves are on the same level

How many nodes are in a full binary tree of height 3?
A. 7
B. 13
C. 16
D. 27
E. None of the above (15)

Full binary tree

• Every interior node (i.e. non-leaf) has 2 children
and all leaves are on the same level

How many nodes are in a full binary tree of height 3?
A. 7
B. 13
C. 16
D. 27
E. None of the above

Full binary tree

• Every interior node (i.e. non-leaf) has 2 children
and all leaves are on the same level

How many nodes are in a full binary tree of height 3?
A. 7
B. 13
C. 16
D. 27
E. None of the above (15)

Claim: A full binary tree of height h has
2h+1-1 nodes

Claim: A full binary tree of height h has
2h+1-1 nodes

Corollary: A binary tree with n nodes has
 height Ω(log n)

Claim: A full binary tree of height h has
2h+1-1 nodes

Corollary: A binary tree with n nodes has
 height Ω(log n)
Pf: n <= 2h+1 – 1
 n+1 <= 2h+1

 log2 (n+1) <= log2 2h+1 = h+1
 h >= log2 (n+1) – 1 = Ω(log n)

Induction framework

• Base case(s):
– claim is true for one or more small values

• Induction hypothesis (IHOP)
– assume claim is true up to some point

• Induction step
– show that claim holds for next value (using IHOP)

Prove that 1+2+3+...+n = n(n+1)/2

• Be sure to:
– Clearly mark the IHOP and when it’s used
– Work from one side (typically the left) and get the

other side; don’t perform operations on both
sides

Prove using induction: A full binary
tree of height h has 2h+1-1 nodes

Use induction to prove that a binary
tree with n (≥ 1) nodes has n-1 edges

Need strong induction: Assume claim holds for
all smaller values

Use induction to prove that a binary
tree with n (≥ 1) nodes has n-1 edges

Fibonacci numbers

• F0 = 0
• F1 = 1
• Fn = Fn-1 + Fn-2

Fibonacci numbers

• F0 = 0
• F1 = 1
• Fn = Fn-1 + Fn-2

 𝐹! =
"
#

"$ #
%

!
− "& #

%

!

𝜙

AVL trees

Height of an arbitrary node

• Height of a node is the height of the subtree
rooted at that node

Which of the following gives height(x)?
A. height(y)
B. height(y)+1
C. (height(y)+height(z))/2
D. max{height(y), height(z)} + 1
E. Not necessarily any of the above

AVL tree
[Adelson-Velsky and Landis, 1962]

• left height = height if first step must go left

• right height = height if first step must go right

• balance of a node: left height – right height

AVL tree
[Adelson-Velsky and Landis, 1962]

• left height = height if first step must go left

• right height = height if first step must go right

• balance of a node: left height – right height

• AVL tree: Every node has balance in {0,+1,-1}

wh = # nodes in smallest AVL tree of height h

wh = # nodes in smallest AVL tree of height h

What is w4?
A. 9
B. 12
C. 15
D. 18
E. None of the above

wh = # nodes in smallest AVL tree of height h

What is w4?
A. 9
B. 12
C. 15
D. 18
E. None of the above

wh = # nodes in smallest AVL tree of height h

w0 = 1
w1 = 2
wh = 1 + wh-1 + wh-2

wh = # nodes in smallest AVL tree of height h

w0 = 1
w1 = 2
wh = 1 + wh-1 + wh-2

Claim: wh = Fh+3 – 1

wh = # nodes in smallest AVL tree of height h

w0 = 1
w1 = 2
wh = 1 + wh-1 + wh-2

Claim: wh = Fh+3 – 1

 > ' !"#
#

 – 2

𝐹! =
1
5

1 + 5
2

!

−
1− 5
2

!

𝜙

wh = # nodes in smallest AVL tree of height h

w0 = 1
w1 = 2
wh = 1 + wh-1 + wh-2

Claim: wh = Fh+3 – 1

 > ' !"#
#

 – 2
 h = O(log𝜙 n)

𝐹! =
1
5

1 + 5
2

!

−
1− 5
2

!

𝜙

wh = # nodes in smallest AVL tree of height h

w0 = 1
w1 = 2
wh = 1 + wh-1 + wh-2

Claim: wh = Fh+3 – 1

 > ' !"#
#

 – 2
 h = O(log𝜙 n)
 h = O(1.44… log2 n)

𝐹! =
1
5

1 + 5
2

!

−
1− 5
2

!

𝜙

