
Maintaining tree balance

9/13/24



Administrivia

• Before class on Monday: Read Section 2.3 and 
complete RQ

• Submit clicker ID (due Tuesday night)

• HW 1 (arrays w/ fast initialization, asymptotic 
ordering, induction) due Tuesday night



Recall: AVL tree
[Adelson-Velsky and Landis, 1962]

• left height = height if first step must go left

• right height = height if first step must go right

• balance of a node: left height – right height

• AVL tree: Every node has balance in {0,+1,-1}



Height of an arbitrary node

• Height of a node is the height of the subtree 
rooted at that node

Which of the following is a formula for  height(x)?
A. height(y)
B. height(y)+1
C. (height(y)+height(z))/2
D. max{height(y), height(z)} + 1
E. Not exactly one of the above
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How does the height of a tree change 
when a node is inserted (using 

insertion as you learned in 142)?
A. Increases by 1
B. Decreases by 1
C. Remains the same
D. Cannot be determined
E. None of the above
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Fixing an AVL tree after insertion

• Find lowest node y that is out of balance
• If balance(y) = 2, check left neighbor x
– If balance(x)=1, single right rotation
– Else double rotation (left and then right)

• Else check right neighbor x
– If balance(x) = -1, single left rotation
– Else double rotation (right and then left)



Insertion case 1: Adding to “outside”
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Claim: No other rotations are needed.
            (All nodes already have good balance)



Insertion case 2a: Adding to “inside” (on left)
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Insertion case 2a: Adding to “inside” (on left)
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Insertion case 2b: Adding to “inside” (on right)
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The same rotation works when 
adding to the right subtree of 
grandchild by a symmetric argument



What about deletions?


