
Maintaining tree balance

9/13/24



Administrivia

• Before class on Monday: Read Section 2.3 and 
complete RQ

• Submit clicker ID (due Tuesday night)

• HW 1 (arrays w/ fast initialization, asymptotic 
ordering, induction) due Tuesday night



Recall: AVL tree
[Adelson-Velsky and Landis, 1962]

• left height = height if first step must go left

• right height = height if first step must go right

• balance of a node: left height – right height

• AVL tree: Every node has balance in {0,+1,-1}



Height of an arbitrary node

• Height of a node is the height of the subtree 
rooted at that node

Which of the following is a formula for  height(x)?
A. height(y)
B. height(y)+1
C. (height(y)+height(z))/2
D. max{height(y), height(z)} + 1
E. Not exactly one of the above

x

zy



Height of an arbitrary node

• Height of a node is the height of the subtree 
rooted at that node

Which of the following is a formula for  height(x)?
A. height(y)
B. height(y)+1
C. (height(y)+height(z))/2
D. max{height(y), height(z)} + 1
E. Not exactly one of the above

x

zy



How does the height of a tree change 
when a node is inserted (using 

insertion as you learned in 142)?
A. Increases by 1
B. Decreases by 1
C. Remains the same
D. Cannot be determined
E. None of the above



How does the height of a tree change 
when a node is inserted (using 

insertion as you learned in 142)?
A. Increases by 1
B. Decreases by 1
C. Remains the same
D. Cannot be determined
E. None of the above



Rotations

y

x y

x

A B

C A

B C

rotate right

Triangles denote arbitrary subtrees
• NOT necessarily the same size



Rotations

y

x y

x

A B

C A

B C

rotate right

rotate left

Triangles denote arbitrary subtrees
• NOT necessarily the same size



Double rotations

height=h+2
balance=+1

height=h+1

height
balance=+2

y

x

A

B

D

z

C

z

y

C DB

x

A

y

z

C

D

A

x

B

rotate left rotate right



Fixing an AVL tree after insertion

• Find lowest node y that is out of balance
• If balance(y) = 2, check left neighbor x
– If balance(x)=1, single right rotation
– Else double rotation (left and then right)

• Else check right neighbor x
– If balance(x) = -1, single left rotation
– Else double rotation (right and then left)



Insertion case 1: Adding to “outside”

y

x

A B

C

Lowest node 
with bad balance

New 
node

height
balance=+2

height
balance=+1

height=h+1 height=h

height=h

Triangles denote arbitrary subtrees
• NOT necessarily the same size

Subtree A includes the new node



Insertion case 1: Adding to “outside”

y

x

A B

C

Lowest node 
with bad balance

New 
node

height
balance=+2

height=h

Let h be the height of B.  What 
are the heights of A and C?
A. h and h+1
B. h+1 and h
C. h+1 and h+2  
D. None of the above
E. Cannot be determined

height
balance=+1

Triangles denote arbitrary subtrees
• NOT necessarily the same size

Subtree A includes the new node



Insertion case 1: Adding to “outside”
Lowest node 

with bad balance

New 
node

height
balance=+2

height=h+2
balance=+1

y

x

A B

C

height=h+1 height=h

height=h

Let h be the height of B.  What 
are the heights of A and C?
A. h and h+1
B. h+1 and h
C. h+1 and h+2  
D. None of the above
E. Cannot be determined

Triangles denote arbitrary subtrees
• NOT necessarily the same size

Subtree A includes the new node



Insertion case 1: Adding to “outside”

y

x

A

B C

rotate right

Lowest node 
with bad balance

New 
node

height
balance=+2

height=h+2
balance=+1

y

x

A B

C

height=h+1 height=h

height=h

height
balance=+2



Insertion case 1: Adding to “outside”

y

x

A B

C y

x

A

B C

rotate right

Lowest node 
with bad balance

New 
node

height
balance=+2

height=h+2
balance=+1

height=h+1 height=h

height=h

height
balance=+2
height
balance=0

height=h+1
balance=0



Insertion case 1: Adding to “outside”

y

x

A B

C y

x

A

B C

rotate right

Lowest node 
with bad balance

New 
node

height=h+3
balance=+2

height=h+2
balance=+1

height=h+1 height=h

height=h

height
balance=+2
height=h+2
balance=0

height=h+1
balance=0



Insertion case 1: Adding to “outside”

y

x

A B

C y

x

A

B C

rotate right

Lowest node 
with bad balance

New 
node

height=h+3
balance=+2

height=h+2
balance=+1

height=h+1 height=h

height=h

height
balance=+2
height=h+2
balance=0

height=h+1
balance=0

Claim: No other rotations are needed.
            (All nodes already have good balance)



Insertion case 2a: Adding to “inside” (on left)

y

x

A

B

D

z

y

C D

double rotation

Lowest node 
with bad balance

New 
node

height=h+3
balance=+2

height=h+2
balance=+1

height=h+1

height
balance=+2

Bz

C

x

A



Insertion case 2a: Adding to “inside” (on left)

y

x

A

B

D

z

y

C D

double rotation

Lowest node 
with bad balance

New 
node

height=h+3
balance=+2

height=h+2
balance=-1

height=h+1

height
balance=+2

Bz

C

x

A
height=h+2
balance=+1



Insertion case 2a: Adding to “inside” (on left)

y

x

A

B

D

z

y

C D

double rotation

Lowest node 
with bad balance

New 
node

height=h+4
balance=+2

height=h+3
balance=-1

height=h+1

height
balance=+2

Bz

C

x

A
height=h+2
balance=+1

height=h+1 height=h

height=h+1

height=h+1



Insertion case 2a: Adding to “inside” (on left)

y

x

A

B

D

z

y

C D

Lowest node 
with bad balance

New 
node

height=h+4
balance=+2

height=h+3
balance=-1

height=h+1

height
balance=+2

Bz

C

x

A
height=h+2
balance=+1

height=h+1 height=h

height=h+1

height=h+1

height=h+2
balance=-1

height=h+3
balance=0

height=h+2
balance=0



Insertion case 2a: Adding to “inside” (on left)

y

x

A

B

D

z

y

C D

Lowest node 
with bad balance

New 
node

height=h+4
balance=+2

height=h+3
balance=-1

height=h+1

height
balance=+2

Bz

C

x

A
height=h+2
balance=+1

height=h+1 height=h

height=h+1

height=h+1

height=h+2
balance=-1

height=h+3
balance=0

height=h+2
balance=0

Claim: No other rotations are needed.
            (All nodes already have good balance)



Insertion case 2b: Adding to “inside” (on right)

y

x

A

B

D

z

y

C D

double rotation

Lowest node 
with bad balance

New 
node

height=h+3
balance=+2

height=h+1

height
balance=+2

Bz

C

x

A

The same rotation works when 
adding to the right subtree of 
grandchild by a symmetric argument



What about deletions?


