
Amortized analysis
10/25/24

Administrivia

• Exam due Sunday night

• Come and meet alumni 4pm TODAY in SMC E117

Recall: Adding to an ArrayList
Doubling the array
void add(T value) {
 if(num == vals.length) {
 T[] temp = (T[]) new Object[num*2];
 for(int i=0; i<num; i++)
 temp[i] = vals[i];
 vals = temp;
 }
 vals[num] = value;
 num++;
}

Growing the array by 1
void add(T value) {
 if(num == vals.length) {
 T[] temp = (T[]) new Object[num+1];
 for(int i=0; i<num; i++)
 temp[i] = vals[i];
 vals = temp;
 }
 vals[num] = value;
 num++;
}

Recall: Adding to an ArrayList
Doubling the array
void add(T value) {
 if(num == vals.length) {
 T[] temp = (T[]) new Object[num*2];
 for(int i=0; i<num; i++)
 temp[i] = vals[i];
 vals = temp;
 }
 vals[num] = value;
 num++;
}

Growing the array by 1
void add(T value) {
 if(num == vals.length) {
 T[] temp = (T[]) new Object[num+1];
 for(int i=0; i<num; i++)
 temp[i] = vals[i];
 vals = temp;
 }
 vals[num] = value;
 num++;
}

What are the worst-case running times of these methods?
A. O(1) and O(1) B. O(1) and O(n) C. O(n) and O(1)
D. O(n) and O(n) E. None of the above

Recall: Adding to an ArrayList
Doubling the array
void add(T value) {
 if(num == vals.length) {
 T[] temp = (T[]) new Object[num*2];
 for(int i=0; i<num; i++)
 temp[i] = vals[i];
 vals = temp;
 }
 vals[num] = value;
 num++;
}

Growing the array by 1
void add(T value) {
 if(num == vals.length) {
 T[] temp = (T[]) new Object[num+1];
 for(int i=0; i<num; i++)
 temp[i] = vals[i];
 vals = temp;
 }
 vals[num] = value;
 num++;
}

What are the worst-case running times of these methods?
A. O(1) and O(1) B. O(1) and O(n) C. O(n) and O(1)
D. O(n) and O(n) E. None of the above

Both have O(n) worst case time per
operation, but…

• Times (in sec) for adding chars one at a time to a list of chars:

Final length doubling incrementing

10,000 0.001 0.015

50,000 0.007 0.721

100,000 0.012 2.743

500,000 0.054 64.746

Motivation for amortized analysis

• Suppose we have a program with the following properties:
• Does n operations
• Operations take different amounts of time, but always ≤ t

• What is the running time?
• Worst case: O(nt)
• Average case: What does this mean? Average over what?
• Amortized analysis: Looks at worst case over a sequence of operations

• If n operations take T(n) time, then amortized time is T(n) / n
 (e.g. If T(n) is O(n), then constant amortized time per operation)

Motivation for amortized analysis

• Suppose we have a program with the following properties:
• Does n operations
• Operations take different amounts of time, but always ≤ t

• What is the running time?
• Worst case: O(nt)
• Average case: What does this mean? Average over what?
• Amortized analysis: Looks at worst case over a sequence of operations

• If n operations take T(n) time, then amortized time is T(n) / n
 (e.g. If T(n) is O(n), then constant amortized time per operation)

Motivation for amortized analysis

• Suppose we have a program with the following properties:
• Does n operations
• Operations take different amounts of time, but always ≤ t

• What is the running time?
• Worst case: O(nt)
• Average case: What does this mean? Average over what?
• Amortized analysis: Looks at worst case over a sequence of operations

• If n operations take T(n) time, then amortized time is T(n) / n
 (e.g. If T(n) is O(n), then constant amortized time per operation)

Motivation for amortized analysis

• Suppose we have a program with the following properties:
• Does n operations
• Operations take different amounts of time, but always ≤ t

• What is the running time?
• Worst case: O(nt)
• Average case: What does this mean? Average over what?
• Amortized analysis: Looks at worst case over a sequence of operations

• If n operations take T(n) time, then amortized time is T(n) / n
 (e.g. If T(n) is O(n), then constant amortized time per operation)

Recall: BFS

while q is non-empty
 u = q.dequeue()
 for each neighbor v of u
 if v is unmarked
 mark v
 q.enqueue(v)

O(V) worst case,
but O(E) total for
all operations

Accounting version
(yes, this example is depreciation, but it’s the same idea)

• Suppose you want to run a laundromat
 Profit

• Year 1: Buy machines ($1000), Earn operating profit ($300) -$700
• Year 2: Earn operating profit ($300) -$300
• Year 3: Earn operating profit ($300) -$300
• Year 4: Earn operating profit ($300) -$300
• Year 5: Earn operating profit ($300) -$300
• Year 6: Replace machines ($1000), Earn operating profit ($300) -$700
• Year 7: Earn operating profit ($300) -$300
• Year 8: Earn operating profit ($300) -$300
• …

Approach 1: Aggregate method

• Compute total time for n operations and then divide by n

Approach 2: Accounting method

• Run a “data structure store”
• Charge amortized costs to the customers
• Pay workers in the back the actual cost
• When amortized cost > actual cost, save the extra in the data

structure; use this to pay for times when amortized cost < actual cost

Approach 2: Accounting method

• Run a “data structure store”
• Charge amortized costs to the customers
• Pay workers in the back the actual cost
• When amortized cost > actual cost, save the extra in the data

structure; use this to pay for times when amortized cost < actual cost

NOTE: Money stored “in the data structure” does not
appear in the implementation; this is just for the analysis

Approach 3: Potential method

• Accounting method except you keep a bank account for all the money
• Name comes from thinking of this as potential energy (from physics)

 Φ(𝐷) is the current balance/potential for data structure D
 Φ(𝐷!) = 0 for initial data structure D0 (no trust funds)
 Φ(𝐷) ≥ 0 always (no going into debt)

amortized cost = actual cost + ∆Φ = actual cost + Φafter - Φbefore

