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Administrivia

• Exam due Sunday night

• Come and meet alumni 4pm TODAY in SMC E117



Recall: Adding to an ArrayList
Doubling the array
void add(T value) {
     if(num == vals.length) {
          T[] temp = (T[]) new Object[num*2];
          for(int i=0; i<num; i++)
               temp[i] = vals[i];
          vals = temp;
     }
     vals[num] = value;
     num++;
}

Growing the array by 1
void add(T value) {
     if(num == vals.length) {
          T[] temp = (T[]) new Object[num+1];
          for(int i=0; i<num; i++)
               temp[i] = vals[i];
          vals = temp;
     }
     vals[num] = value;
     num++;
}
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What are the worst-case running times of these methods?
A. O(1) and O(1) B. O(1) and O(n) C. O(n) and O(1)
D. O(n) and O(n) E. None of the above
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Both have O(n) worst case time per 
operation, but…

• Times (in sec) for adding chars one at a time to a list of chars:

Final length doubling incrementing

10,000 0.001 0.015

50,000 0.007 0.721

100,000 0.012 2.743

500,000 0.054 64.746



Motivation for amortized analysis

• Suppose we have a program with the following properties:
• Does n operations
• Operations take different amounts of time, but always ≤ t

• What is the running time?
• Worst case: O(nt)
• Average case: What does this mean?  Average over what?
• Amortized analysis: Looks at worst case over a sequence of operations

• If n operations take T(n) time, then amortized time is T(n) / n
    (e.g. If T(n) is O(n), then constant amortized time per operation)
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Recall: BFS

while q is non-empty
 u = q.dequeue()
 for each neighbor v of u
  if v is unmarked
   mark v
   q.enqueue(v)

O(V) worst case, 
but O(E) total for 
all operations



Accounting version
(yes, this example is depreciation, but it’s the same idea)

• Suppose you want to run a laundromat
          Profit

• Year 1: Buy machines ($1000), Earn operating profit ($300)  -$700
• Year 2: Earn operating profit ($300)     -$300
• Year 3: Earn operating profit ($300)     -$300
• Year 4: Earn operating profit ($300)     -$300
• Year 5: Earn operating profit ($300)     -$300
• Year 6: Replace machines ($1000), Earn operating profit ($300) -$700
• Year 7: Earn operating profit ($300)     -$300
• Year 8: Earn operating profit ($300)     -$300
• …



Approach 1: Aggregate method

• Compute total time for n operations and then divide by n



Approach 2: Accounting method

• Run a “data structure store”
• Charge amortized costs to the customers
• Pay workers in the back the actual cost
• When amortized cost > actual cost, save the extra in the data 

structure; use this to pay for times when amortized cost < actual cost
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NOTE: Money stored “in the data structure” does not 
appear in the implementation; this is just for the analysis



Approach 3: Potential method

• Accounting method except you keep a bank account for all the money
• Name comes from thinking of this as potential energy (from physics)

   Φ(𝐷) is the current balance/potential for data structure D
 Φ(𝐷!) = 0 for initial data structure D0                   (no trust funds)
 Φ(𝐷) ≥ 0 always                (no going into debt)

amortized cost = actual cost + ∆Φ = actual cost + Φafter - Φbefore


