Amortization w/ potential method

10/30/24

Recall: Amortized analysis

- Worst case over a sequence of operations
- Method 1: Aggregate method
 - Compute time for n operations and divide by n
- Method 2: Accounting method
 - Run data structures "store"; amortized cost is what you charge, pay for work
 - Put extra money "into" the data structure and show there is always enough
- Method 3: Potential method
 - Put extra money into one account, the potential Φ
 - Φ = 0 initially and Φ >= 0 always
 - amortized cost = actual cost + $\Delta \Phi$ = actual cost + Φ_{after} Φ_{before}

Unordered linked lists

- Consider set operations on an unordered linked list
 - access/find: search list for desired value
 - insert: find first to make sure the value isn't there already
 - delete: find and remove the value
- Cost model:
 - accessing ith value costs i
 - can move a value toward the front for free in an access
 - swapping any other adjacent pair costs 1

Move-to-front (MTF)

Heuristic: When you access an element, move it to the front of the list

• Insert values in the front if they're not in the list (or move them if they are)

Theorem: For any sequence of operations, MTF has at most twice the cost of any other algorithm

Looking at a sequence of operations

 $c_{OPT}(t) = cost to optimal algorithm for tth access$ $<math>c_{MTF}(t) = cost to MTF for tth access$

Looking at a sequence of operations

 $c_{OPT}(t) = cost to optimal algorithm for tth access$ $<math>c_{MTF}(t) = cost to MTF for tth access$

 Φ = number of inversions between MTF's list and optimal list $\Phi(t)$ = number of inversions after the tth access

Meets the conditions:

 $\Phi(0) = 0$ $\Phi(t) \ge 0$

Suffices to prove the claim since summing it over m moves gives MTF cost + $\Phi(m) \le 2$ OPT cost - m

Proof:

- Let x_t be the item accessed in t^{th} step.
- Let k = #items before x_t in both lists
- Let i = #items before x_t in MTF, but after it in OPT

Proof:

Let x_t be the item accessed in t^{th} step.

Let k = #items before x_t in both lists

Let i = #items before x_t in MTF, but after it in OPT

What C_{MTF}(t), the cost of MTF accessing xt and moving it to the front?A. kB. k+1Cost model:C. iaccessing ith value costs i (free to move it toward front)D. k+iswapping any other adjacent pair costs 1E. k+i+1

Proof:

Let x_t be the item accessed in t^{th} step.

Let k = #items before x_t in both lists

Let i = #items before x_t in MTF, but after it in OPT

What C_{MTF}(t), the cost of MTF accessing x_t and moving it to the front?A. kB. k+1Cost model:C. iaccessing ith value costs i (free to move it toward front)D. k+iswapping any other adjacent pair costs 1E. k+i+1