
Amortization w/ potential method

10/30/24

Recall: Amortized analysis

• Worst case over a sequence of operations

• Method 1: Aggregate method
• Compute time for n operations and divide by n

• Method 2: Accounting method
• Run data structures “store”; amortized cost is what you charge, pay for work
• Put extra money “into” the data structure and show there is always enough

• Method 3: Potential method
• Put extra money into one account, the potential Φ
• Φ = 0 initially and Φ >= 0 always
• amortized cost = actual cost + ∆Φ = actual cost + Φafter - Φbefore

Unordered linked lists

• Consider set operations on an unordered linked list
• access/find: search list for desired value
• insert: find first to make sure the value isn’t there already
• delete: find and remove the value

• Cost model:
• accessing ith value costs i
• can move a value toward the front for free in an access
• swapping any other adjacent pair costs 1

Move-to-front (MTF)

Heuristic: When you access an element, move it to the front of the list
• Insert values in the front if they’re not in the list (or move them if they are)

Theorem: For any sequence of operations, MTF has at most twice the
cost of any other algorithm

Looking at a sequence of operations

cOPT(t) = cost to optimal algorithm for tth access
cMTF(t) = cost to MTF for tth access

Φ = number of inversions between MTF’s list and optimal list
 Φ(t) = number of inversions after the tth access

Meets the conditions:
 Φ(0) = 0
 Φ(t) ≥ 0

Looking at a sequence of operations

cOPT(t) = cost to optimal algorithm for tth access
cMTF(t) = cost to MTF for tth access

Φ = number of inversions between MTF’s list and optimal list
 Φ(t) = number of inversions after the tth access

Meets the conditions:
 Φ(0) = 0
 Φ(t) ≥ 0

Claim: CMTF(t) + Φ(t) - Φ(t-1) ≤ 2COPT(t) -1

Suffices to prove the claim since summing it over m moves gives
 MTF cost + Φ(m) ≤ 2 OPT cost - m

Claim: CMTF(t) + Φ(t) - Φ(t-1) ≤ 2COPT(t) -1

Proof:
Let xt be the item accessed in tth step.
Let k = #items before xt in both lists
Let i = #items before xt in MTF, but after it in OPT

Claim: CMTF(t) + Φ(t) - Φ(t-1) ≤ 2COPT(t) -1

Proof:
Let xt be the item accessed in tth step.
Let k = #items before xt in both lists
Let i = #items before xt in MTF, but after it in OPT

What CMTF(t), the cost of MTF accessing xt and moving it to the front?
A. k
B. k+1
C. i
D. k+i
E. k+i+1

Cost model:
accessing ith value costs i (free to move it toward front)
swapping any other adjacent pair costs 1

Claim: CMTF(t) + Φ(t) - Φ(t-1) ≤ 2COPT(t) -1

Proof:
Let xt be the item accessed in tth step.
Let k = #items before xt in both lists
Let i = #items before xt in MTF, but after it in OPT

What CMTF(t), the cost of MTF accessing xt and moving it to the front?
A. k
B. k+1
C. i
D. k+i
E. k+i+1

Cost model:
accessing ith value costs i (free to move it toward front)
swapping any other adjacent pair costs 1

