Using divide and conquer

9/18/24

9	6	8	7	12	10
1	2	3	4	5	6

9	6	8	7	12	10
1	2	3	4	5	6

- Is the max profit always from buying at the lowest price?
 - A. Yes
 - B. No

9	6	8	7	12	10
1	2	3	4	5	6

- Is the max profit always from buying at the lowest price?
 - A. Yes
 - B. <u>No</u>

9	6	8	7	12	10
1	2	3	4	5	6

- D&C algorithm:
 - Split array into halves
 - Determine max profit, max price, and min price for each half
 - Combine these to compute own return values

 Maximize profit from one purchase and sale of stock given an array of prices over time:

9	6	8	7	12	10
1	2	3	4	5	6

• What recurrence describes the running time of our algorithm?

A. T(n) = 2T(n/2) + 1

B. $T(n) = 2T(n/2) + \log n$

C.
$$T(n) = 2T(n/2) + n$$

D. T(n) = $2T(n/2) + n^2$

E. None of the above

9	6	8	7	12	10
1	2	3	4	5	6

- What recurrence describes the running time of our algorithm?
 - A. T(n) = 2T(n/2) + 1
 - B. $T(n) = 2T(n/2) + \log n$
 - C. T(n) = 2T(n/2) + n

- D. T(n) = $2T(n/2) + n^2$
- E. None of the above

In the book: Transform problem to finding maximum subarray

• Maximize profit from one purchase and sale of stock given an array of prices over time:

9	6	8	7	12	10
1	2	3	4	5	6

• Find the contiguous subarray with largest sum

-3	2	-1	5	-2
2	3	4	5	6

Next problem: Multiplying large integers

782934728937492347982378942 × 3789234783974983274832792

What is the running time of the gradeschool algorithm (n-digit integers)?

- A. O(1)
- B. O(n)
- C. O(n log n)
- D. O(n²)
- E. None of the above

What is the running time of the gradeschool algorithm (n-digit integers)?

- A. O(1)
- B. O(n)
- C. O(n log n)
- D. <u>O(n²)</u>
- E. None of the above