
Dynamic programming

9/27/24

Administrivia

• HW 3 (multithreading) due Tuesday 10/1

• Exam 1 out Wednesday
– Multi-day takehome
– Open notes and book, closed internet and friends
– No class next Thursday (10/3)
– Due early the next week (probably Monday night)
– Everything thru multithreaded (induction, asymptotic

ordering, AVL trees, D&C, multithreaded)

How not to compute Fibonacci numbers

int fib(int n) {
 if(n <= 1)
 return n;
 return fib(n-1) + fib(n-2);
}

Instead, solve from small cases

int fib(int n) {
 int array[] = new int[n+1];

 array[0] = 0;
 array[1] = 1;
 for(int i=2; i<=n; i++)
 array[i] = array[i-1] + array[i-2];

 return array[n];
}

Dynamic programming

• Divide & conquer, but storing subproblem values
to avoid recomputing them

• In this context, “programming” = “filling in table”

Properties of dynamic
programming problems

• “Optimal substructure”
– optimal solutions build on optimal solutions to

subproblems

• “Overlapping subproblems”
– subproblems appear many times in a purely

recursive solution

Memoization: store subproblem solutions

//map to store values we’ve already computed:
Map<Integer,Integer> memos; //memos.get(i) is Fi

int fib(int n) {
 if(n <= 1)
 return n;
 if(!memos.containsKey(n))
 memos.put(n, fib(n-1) + fib(n-2));
 return memos.get(n);
}

Which approach to use?

• “bottom up”: loop-based approach
– need to find nice order to fill in the table
– cleaner code since don’t need to see if values are

already computed

• “top down”: memoization
– may not need to fill in the entire table

Rod cutting
• Given a rod of length n and prices of pieces of

different length, what is the best possible total
value?

length i 1 2 3 4 5 6 7 8 9 10

price pi 1 5 8 9 10 17 17 20 24 30

Rod cutting
• Given a rod of length n and prices of pieces of

different length, what is the best possible total
value?

• Proposal: Take as many of the largest value size as
possible

length i 1 2 3 4 5 6 7 8 9 10

price pi 1 5 8 9 10 17 17 20 24 30

Rod cutting
• Given a rod of length n and prices of pieces of

different length, what is the best possible total
value?

• Proposal: Take as many of the largest value size as
possible

length i 1 2 3 4 5 6 7 8 9 10

price pi 1 5 8 9 10 17 17 20 24 30

Does this work?
A. Yes
B. No

Rod cutting
• Given a rod of length n and prices of pieces of

different length, what is the best possible total
value?

• Proposal: Take as many of the largest value size as
possible

 Doesn’t work: Length 4 with table above
 (2+2 is better than 4)

length i 1 2 3 4 5 6 7 8 9 10

price pi 1 5 8 9 10 17 17 20 24 30

Rod cutting
• Given a rod of length n and prices of pieces of

different length, what is the best possible total
value?

• Proposal: Take as many as possible of the size with
most value per unit length (highest “value density”)

length i 1 2 3 4 5 6 7 8 9 10

price pi 1 5 8 9 10 17 17 20 24 30

Rod cutting
• Given a rod of length n and prices of pieces of

different length, what is the best possible total
value?

• Proposal: Take as many as possible of the size with
most value per unit length (highest “value density”)

length i 1 2 3 4 5 6 7 8 9 10

price pi 1 5 8 9 10 17 17 20 24 30

Does this work?
A. Yes
B. No

Rod cutting
• Given a rod of length n and prices of pieces of

different length, what is the best possible total
value?

• Proposal: Take as many as possible of the size with
most value per unit length (highest “value density”)

 Doesn’t work: Length 4 with

length i 1 2 3 4 5 6 7 8 9 10

price pi 1 5 8 9 10 17 17 20 24 30

length i 1 2 3

price pi 1 5 8

Rod cutting
• Given a rod of length n and prices of pieces of

different length, what is the best possible total
value?

• How can I phrase this recursively?
 int best_value(int[] p, int n) {
 ...
 }

length i 1 2 3 4 5 6 7 8 9 10

price pi 1 5 8 9 10 17 17 20 24 30

Recursive version

int best_value(int[] p, int n) {
 if(n == 0)
 return 0
 q = - ∞ //best value so far
 for i = 1 to n
 q = max(q, p[i] + best_value(p, n-i))
 return q
}

Bottom up version

int best_value(int[] p, int n) {
 allocate r[0..n]
 r[0] = 0

 for j = 1 to n {
 q = -∞ //best value so far
 for i = 1 to j
 q = max(q, p[i]+r[j-i])
 r[j] = q
 }
 return r[n]
}

Bottom up version

int best_value(int[] p, int n) {
 allocate r[0..n]
 r[0] = 0
 for j = 1 to n {
 q = -∞ //best value so far
 for i = 1 to j
 q = max(q, p[i]+r[j-i])
 r[j] = q
 }
 return r[n]
}

How do I get the actual
optimal cuts?

Memoization version: setup code

int best_value(int[] p, int n) {
 allocate r[0..n]
 r[0] = 0
 for i = 1 to n
 r[i] = -∞

 return best_value_aux(p, n, r)
}

Memoized version: main code

int best_value_aux(int[] p, int n, int[] r) {
 if(r[n] >= 0)
 return r[n]

 q = - ∞
 for i = 1 to n
 q = max(q, p[i] + best_value_aux(p, n-i, r))
 r[n] = q
 return q
}

Rod cutting with cutting cost

Suppose the cost to make a cut is C and your
goal is to maximize profit (i.e. revenue minus
cutting cost).

int max_profit(int[] p, int C, int n) {necessarily
maximize the profit
a) Give an efficient dynamic programming

algorithm to maximize profit

Rod cutting with cutting cost

Suppose the cost to make a cut is C and your
goal is to maximize profit (i.e. revenue minus
cutting cost).

int max_profit(int[] p, int C, int n) {

a) Show that maximizing the revenue does not
necessarily maximize the profit
necessarily maximize th

Rod cutting with cutting cost

Suppose the cost to make a cut is C and your
goal is to maximize profit (i.e. revenue minus
cutting cost).

int max_profit(int[] p, int C, int n) {

b) Give an efficient dynamic programming
algorithm to maximize profit
necessarily maximize th

Commercial purchasing

Want to purchase a subset of commercial slots
available during an online show. You have a
sorted list of their locations (x1, x2, …, xn) from
the beginning of the show.
• Buying slot xi brings in revenue ri
• You don’t want to buy commercials starting
⩽2 minutes apart

How do you maximize revenue?

