More dynamic programming

9/30/24

Administrivia

- HW 3 (multithreading) due tomorrow
- Read Section 14.4 for Wednesday
- Exam 1 out Wednesday
 - Multi-day takehome
 - Open notes and book, closed internet and friends
 - No class next Thursday (10/3)
 - Due early the next week (probably Monday night)
 - Everything thru multithreaded (induction, asymptotic ordering, AVL trees, D&C, multithreaded)

Each week, a consultant is offered a high-stress job and a low-stress job. The payoff for these jobs in week i is h_i and l_i respectively. In order to prepare for a high-stress job, the consultant must go on vacation the week before, not performing either job that week.

Each week, a consultant is offered a high-stress job and a low-stress job. The payoff for these jobs in week i are h_i and l_i respectively. In order to prepare for a high-stress job, the consultant must go on vacation the week before, not performing either job that week.

What is the maximum total payoff for these jobs?

i	1	2	3	4
h _i	12	17	20	22
l _i	12	9	10	10

- A. 41
- B. 42
- C. 43
- D. 45
- E. None of the above

Each week, a consultant is offered a high-stress job and a low-stress job. The payoff for these jobs in week i are h_i and l_i respectively. In order to prepare for a high-stress job, the consultant must go on vacation the week before, not performing either job that week.

What is the maximum total payoff for these jobs?

i	1	2	3	4
h _i	12	17	20	22
li	<u>12</u>	9	10	10

- A. 41
- B. 42
- C. 43
- D. 45
- E. None of the above

Each week, a consultant is offered a high-stress job and a low-stress job. The payoff for these jobs in week i are h_i and l_i respectively. In order to prepare for a high-stress job, the consultant must go on vacation the week before, not performing either job that week.

Give an algorithm to find the sequence of jobs to complete that maximize the total payoff.

Once you're successful, you start operating with clients in both New York and San Francisco. Each month, you need to decide where to set up your office. For month i, it costs N_i to operate in New York and S_i to operate in San Francisco. In addition, each time you move offices, it costs M.

Give an algorithm to find the minimum cost sequence of office locations.

An ordered graph is a directed graph with vertices v_1 , v_2 , ..., v_n where (i) every edge is directed from the lowered numbered vertex to the higher-numbered, and (ii) every node other than v_n has at least one edge leaving it.

Give an algorithm to find the longest path (most edges) starting at v_1 .