Graphs

Graphs

- (V, E) = set of vertices V and set of edges E
 - Edges can be directed or undirected
 - Vertices and edges may have extra data attached to them

Applications

- Geographic information
- Computer networks
- Web graph, citation graph
- Facebook graph
- Precedence relationships
- State transitions

Depth-First Search (DFS)

```
mark origin as visited;
vertexStack.push(origin);
while(!vertexStack.isEmpty()) {
    topVertex = vertexStack.peek();
    if(topVertex has an unvisited neighbor) {
        nextNeighbor = next unvisited neighbor of topVertex;
        mark nextNeighbor as visited;
        vertexStack.push(nextNeighbor);
    } else
        vertexStack.pop();
```

}

Recursive DFS

```
DFS(Vertex v) {
    while(v has another neighbor) {
        u = next neighbor of v;
        if(u is unmarked) {
            mark u;
            DFS(u);
        }
    }
}
```

Breadth-First Search (BFS)

```
mark origin as visited;
vertexQueue.enqueue(origin);
while(!vertexQueue.isEmpty()) {
    frontVertex = vertexQueue.dequeue();
    while(frontVertex has a neighbor) {
        nextNeighbor = next neighbor of frontVertex;
        if(nextNeighbor is not visited) {
            mark nextNeighbor as visited;
            vertexQueue.enqueue(nextNeighbor);
        }
    }
}
```

}

Breadth-First Search (BFS)

```
mark origin as visited;
vertexQueue.enqueue(origin);
while(!vertexQueue.isEmpty()) {
    frontVertex = vertexQueue.dequeue();
    while(frontVertex has a neighbor) {
        nextNeighbor = next neighbor of frontVertex;
        if(nextNeighbor is not visited) {
            mark nextNeighbor as visited;
            vertexQueue.enqueue(nextNeighbor);
        }
        How can this be used to find a path
        from origin to a specific other vertex t?
```

Graph representation: Adjacency list

List of vertices, each with a list of incident edges (or neighboring vertices)

Graph representation: Adjacency matrix

• Cell i, j is 1 if vertices i and j are adjacent

				from		
		0	1	2	3	4
to	0	0	1	0	1	1
	1	1	0	0	1	0
	2	0	0	0	1	1
	3	1	1	1	0	0
	4	1	0	1	0	0

Graph coloring

- Assign each vertex a "color" so that no pair of adjacent vertices have the same color
 - Colors are typically numbers 1, 2, etc
- Goal is to use as few colors as possible

What is the fewest number of colors that can be used to color the graph below?

What is the fewest number of colors that can be used to color the graph below?

A. 2 B. 3 C. <u>4</u>

D. 5

E. 6

Is this graph 2-colorable?

B. No

Is this graph 2-colorable?

B. <u>No</u>

Give an algorithm to determine if a graph is 2colorable

Consider the adjacency matrix representation of a directed graph. Give an O(n) algorithm to determine if it has a *universal sink*, a vertex with incoming edges from every other vertex and no outgoing edges.