
Graph applications and 
computing an MST

10/11/24



Administrivia

• HW 4 (Dynamic programming and Graph applications) due Tuesday 
night



Graph algorithms/problems so far

• BFS: Traverse and find distance in unweighted graph
• DFS: Traverse and handle multiple components
• MST: Find minimum spanning tree (connect at minimum cost)
• Shortest path



Which of the following algorithms is 
most appropriate for the Skyscraper 
floors problem?

A. BFS
B. DFS
C. Either BFS or DFS
D. MST
E. Shortest path
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Recall: Minimum Spanning Tree (MST)

• A subset of edges that connects all vertices and has minimum total 
weight 
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Prim-Jarnik algorithm
• Repeatedly add the cheapest edge leaving the set of 

vertices reachable from a root vertex r
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Prim-Jarnik algorithm
• Repeatedly add the cheapest edge leaving the set of 

vertices reachable from a root vertex r

MST-Prim(G,w, r)
 set key of r to 0, set keys for other vertices to ∞
 priority queue Q = G.V
 while Q != ⌀
  u = Extract-min(Q)
  for each neighbor v of u
   if v in Q and w(u,v) < v.key
    v.key = w(u,v)



Cut property

Let G=(V,E) be a connected undirected graph with non-negative edge 
weights.  If A is a subset of E contained in a MST, (S,V-S) is a cut 
respecting A, and e is one of the cheapest edges from S to V-S, then 
there is a MST containing A+e.



Applying the cut property

Let G=(V,E) be a connected undirected graph with non-negative edge 
weights.  If A is a subset of E contained in a MST, (S,V-S) is a cut 
respecting A, and e is one of the cheapest edges from S to V-S, then 
there is a MST containing A+e.

Prim-Jarnik: Repeatedly add the cheapest edge leaving the set of 
vertices reachable from a root vertex r



Kruskal’s algorithm
• Repeatedly add the cheapest edge whose endpoints 

aren’t already connected
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Kruskal’s algorithm
• Repeatedly add the cheapest edge whose endpoints 

aren’t already connected

MST-Kruskal(G,w)
 A = empty set
 for each vertex v in G.V
  Make-set(v)
 sort edges of G.E into nondecreasing order
 for each edge (u,v) in this order
  if Find-set(u) != Find-set(v)
   A = A + (u,v)
   Union(u,v)
 return A



Kruskal’s algorithm
• Repeatedly add the cheapest edge whose endpoints 

aren’t already connected

Cut property: Let G=(V,E) be a connected undirected 
graph with non-negative edge weights.  If A is a 
subset of E contained in a MST, (S,V-S) is a cut 
respecting A, and e is one of the cheapest edges 
from S to V-S, then there is a MST containing A+e.


