
More greed!
10/23/24

Recall: Greedy algorithms

• Use a simple rule to pick part of the solution, generally in a locally-
best way
• Then, prune choices this makes impossible and repeat
• Greedy algorithms don’t always work, but they do for some problems

• Proving they work: Suppose the greedy rule doesn’t allow an optimal
solution. Take a solution that is optimal and change it to include the
greedy choice. Show that this creates an optimal solution that (now)
includes the greedy choice, contradicting the original assumption.

Application: Minimizing maximum lateness

• Set of jobs {J1, J2, …, Jn}
• Job Ji has duration pi and deadline di

• A schedule S assigns jobs to run one at a time, Ji starting at si
S and

finishing at fi
S = si

S + pi
• The job’s lateness is max { 0, fi

S – di }

• Goal: Construct schedule that minimizes maximum lateness

Application: Minimizing maximum lateness

• Set of jobs {J1, J2, …, Jn}
• Job Ji has duration pi and deadline di

• A schedule S assigns jobs to run one at a time, Ji starting at si
S and

finishing at fi
S = si

S + pi
• The job’s lateness is max { 0, fi

S – di }

• Goal: Construct schedule that minimizes maximum lateness

• Earliest Deadline First (EDF): Run the job with minimal di

Claim: There is a schedule minimizing max-lateness
that starts with the job with earliest deadline

Let Ji be the job with earliest deadline and S be a schedule minimizing max-lateness
that doesn’t start with Ji.

Claim: There is a schedule minimizing max-lateness
that starts with the job with earliest deadline

Let Ji be the job with earliest deadline and S be a schedule minimizing max-lateness
that doesn’t start with Ji.

WLOG, assume S doesn’t include unnecessary idle time.

Claim: There is a schedule minimizing max-lateness
that starts with the job with earliest deadline

Let Ji be the job with earliest deadline and S be a schedule minimizing max-lateness
that doesn’t start with Ji.

WLOG, assume S doesn’t include unnecessary idle time.

Construct S’ from S as follows:
• Start with Ji
• All jobs running before Ji in S are delayed by pi
• All jobs running after Ji in S are unchanged

Looking at latenesses

• Jobs running after Ji in S: No change in position so same lateness
• Ji itself: Runs earlier so lateness unchanged or improved
• Jobs running before Ji in S: delayed by pi

 Let Jj be such a job. Its lateness in S’ is either 0 or
 fj

S’ – dj ⩽ fi
S – dj

 ⩽ fi
S – di

 ⩽ lateness of Ji in S

Looking at latenesses

• Jobs running after Ji in S: No change in position so same lateness
• Ji itself: Runs earlier so lateness unchanged or improved
• Jobs running before Ji in S: delayed by pi

 Let Jj be such a job. Its lateness in S’ is either 0 or
 fj

S’ – dj ⩽ fi
S – dj

 ⩽ fi
S – di

 ⩽ lateness of Ji in S

Looking at latenesses

• Jobs running after Ji in S: No change in position so same lateness
• Ji itself: Runs earlier so lateness unchanged or improved
• Jobs running before Ji in S: delayed by pi

 Let Jj be such a job. Its lateness in S’ is either 0 or
 fj

S’ – dj ⩽ fi
S – dj

 ⩽ fi
S – di

 ⩽ lateness of Ji in S

Looking at latenesses

• Jobs running after Ji in S: No change in position so same lateness
• Ji itself: Runs earlier so lateness unchanged or improved
• Jobs running before Ji in S: delayed by pi

 Let Jj be such a job. Its lateness in S’ is either 0 or
 fj

S’ – dj ⩽ fi
S – dj

 ⩽ fi
S – di

 ⩽ lateness of Ji in S

Looking at latenesses

• Jobs running after Ji in S: No change in position so same lateness
• Ji itself: Runs earlier so lateness unchanged or improved
• Jobs running before Ji in S: delayed by pi

 Let Jj be such a job. Its lateness in S’ is either 0 or
 fj

S’ – dj ⩽ fi
S – dj

 ⩽ fi
S – di

 ⩽ lateness of Ji in S

Looking at latenesses

• Jobs running after Ji in S: No change in position so same lateness
• Ji itself: Runs earlier so lateness unchanged or improved
• Jobs running before Ji in S: delayed by pi

 Let Jj be such a job. Its lateness in S’ is either 0 or
 fj

S’ – dj ⩽ fi
S – dj

 ⩽ fi
S – di

 ⩽ lateness of Ji in S

Making change

Given coin denominations d1, d2, ..., dn, what is the fewest coins
needed to make change C?

Show that giving the largest denomination possible is optimal if d1 = 1,
d2 = 5, d3= 10, and d4= 25 (n=4).

Making change

Claim: Giving the largest denomination possible is optimal (i.e. uses the fewest
coins) if d1 = 1, d2 = 5, d3= 10, and d4= 25 (n=4).
Proof: Suppose the optimal solution doesn’t use the largest possible
denomination X. We break into cases based on X.
It can’t be d1=1 since there isn’t anything smaller. Can’t be d2=5 since any
solution for C >= 5 cents using only d1s can be made better by replacing 5 of
them with a d2. Similarly, any solution for C >= 10 using only d1s and d2s has
coins totaling 10 that can be replaced with a d3.
Thus, suppose X is d4. By the reasoning above, the optimal solution must use
as many d3s as possible. There can’t be 3 of these or replacing them with a d4
and a d2 would reduce the number of coins. Therefore C must be in the range
25-29. Each of these can be eliminated by case analysis.

Application: Minimizing total flow

• Set of jobs {J1, J2, …, Jn}
• Job Ji has duration pi and a release time ri

• A schedule S assigns jobs to run one at a time, Ji starting at si
S ≥ ri and

finishing at fi
S = si

S + pi
• The job’s flow is fi

S - ri

• Goal: Construct schedule that minimizes the total flow (sum of every
job’s flow) when every job’s release time is 0 (ri = 0 for all i)

Application: Minimizing total flow

• Set of jobs {J1, J2, …, Jn}
• Job Ji has duration pi and a release time ri

• A schedule S assigns jobs to run one at a time, Ji starting at si
S ≥ ri and

finishing at fi
S = si

S + pi
• The job’s flow is fi

S - ri

• Goal: Construct schedule that minimizes the total flow (sum of every
job’s flow) when every job’s release time is 0 (ri = 0 for all i)

i ri pi
1 0 2

2 0 4
3 0 3

What is the total flow for this schedule?

1 2 3
time 0 2 6 9

A. 9
B. 12
C. 17
D. 25
E. None of the above

Application: Minimizing total flow

• Set of jobs {J1, J2, …, Jn}
• Job Ji has duration pi and a release time ri

• A schedule S assigns jobs to run one at a time, Ji starting at si
S ≥ ri and

finishing at fi
S = si

S + pi
• The job’s flow is fi

S - ri

• Goal: Construct schedule that minimizes the total flow (sum of every
job’s flow) when every job’s release time is 0 (ri = 0 for all i)

i ri pi
1 0 2

2 0 4
3 0 3

What is the total flow for this schedule?

1 2 3
time 0 2 6 9

A. 9
B. 12
C. 17
D. 25
E. None of the above

Application: Minimizing total flow

• Set of jobs {J1, J2, …, Jn}
• Job Ji has duration pi and a release time ri

• A schedule S assigns jobs to run one at a time, Ji starting at si
S ≥ ri and

finishing at fi
S = si

S + pi
• The job’s flow is fi

S - ri

• Goal: Construct schedule that minimizes the total flow (sum of every
job’s flow) when every job’s release time is 0 (ri = 0 for all i)

What algorithm should we try for this?
A. First-in first-out (min ri first)
B. Last-in first-out (max ri first)
C. Shortest processing time (min pi first)
D. Longest processing time (max pi first)
E. Let’s end class now and just do them all for HW

Application: Minimizing total flow

• Set of jobs {J1, J2, …, Jn}
• Job Ji has duration pi and a release time ri

• A schedule S assigns jobs to run one at a time, Ji starting at si
S ≥ ri and

finishing at fi
S = si

S + pi
• The job’s flow is fi

S - ri

• Goal: Construct schedule that minimizes the total flow (sum of every
job’s flow) when every job’s release time is 0 (ri = 0 for all i)

What algorithm should we try for this?
A. First-in first-out (min ri first)
B. Last-in first-out (max ri first)
C. Shortest processing time (min pi first)
D. Longest processing time (max pi first)
E. Let’s end class now and just do them all for HW

Shortest Processing Time (SPT)

• Suppose SPT doesn’t give an optimal schedule
• Consider an optimal schedule and consider a place where it runs a

longer job Jj immediately before a shorter job Ji

• Swap the order of those jobs

• Repeating this gives SPT while improving at every step

j i

i j

pi < pj
so change in flow is
pi – pj < 0

Shortest Processing Time (SPT)

• Suppose SPT doesn’t give an optimal schedule
• Consider an optimal schedule and consider a place where it runs a

longer job Jj immediately before a shorter job Ji

• Swap the order of those jobs

• Repeating this gives SPT while improving at every step

j i

i j

pi < pj
so change in flow is
pi – pj < 0

Does it still work if we remove the requirement
that ri = 0 for all i? (Whenever idle, start the
shortest job that has been released.)
A. Yes
B. No
Either adapt the proof or give a counterexample

Shortest Processing Time (SPT)

• Suppose SPT doesn’t give an optimal schedule
• Consider an optimal schedule and consider a place where it runs a

longer job Jj immediately before a shorter job Ji

• Swap the order of those jobs

• Repeating this gives SPT while improving at every step

j i

i j

pi < pj
so change in flow is
pi – pj < 0

Does it still work if we remove the requirement
that ri = 0 for all i? (Whenever idle, start the
shortest job that has been released.)
A. Yes
B. No
Either adapt the proof or give a counterexample

Application: Encoding data

• How many bits does it take to encode 100 Java chars?

Application: Encoding data

• How many bits does it take to encode 100 Java chars?
• Suppose you know they are all a thru e? How many bits per char?

A. 1
B. 2
C. 3
D. 5
E. None of the above

Application: Encoding data

• How many bits does it take to encode 100 Java chars?
• Suppose you know they are all a thru e? How many bits per char?

A. 1
B. 2
C. 3
D. 5
E. None of the above

Application: Encoding data

• How many bits does it take to encode 100 Java chars?
• Suppose you know they are all a thru e? How many bits per char?
• What if you know they have a specific frequency?

char a b c d e
#times 47 11 20 5 17

Huffman encoding

• Length: 47 + 2*20 + 3*17 + 4*(11+5) = 202

char a b c d e

#times 47 11 20 5 17
encoding 0 1111 10 1110 110

Each term: length of encoding * #times

Huffman encoding

• Length: 47 + 2*20 + 3*17 + 4*(11+5) = 202

char a b c d e

#times 47 11 20 5 17
encoding 0 1111 10 1110 110

a

c
e

d b

0

0

0

0

1

1

1

1

Each term: length of encoding * #times
 depth in tree

