More greed!
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Recall: Greedy algorithms

* Use a simple rule to pick part of the solution, generally in a locally-
best way

* Then, prune choices this makes impossible and repeat
* Greedy algorithms don’t always work, but they do for some problems

* Proving they work: Suppose the greedy rule doesn’t allow an optimal
solution. Take a solution that is optimal and change it to include the
greedy choice. Show that this creates an optimal solution that (now)
includes the greedy choice, contradicting the original assumption.



Application: Minimizing maximum lateness

* Set of jobs {J;, J, ..., J,.}

* Job J, has duration p; and deadline d,

* A schedule S assigns jobs to run one at a time, J; starting at s> and
finishing at f°> = s> + p,
* The job’s lateness is max { 0, f°>—d, }

e Goal: Construct schedule that minimizes maximum lateness
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e Goal: Construct schedule that minimizes maximum lateness

* Earliest Deadline First (EDF): Run the job with minimal d.
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Claim: There is a schedule minimizing max-lateness
that starts with the job with earliest deadline

Let J; be the job with earliest deadline and S be a schedule minimizing max-lateness
that doesn’t start with J..

WLOG, assume S doesn’t include unnecessary idle time.

Construct S’ from S as follows:

 Start with J,

* Alljobs running before J;in S are delayed by p;
* Alljobs running after J;in S are unchanged
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Looking at latenesses

* Jobs running after J. in S: No change in position so same lateness
* J. itself: Runs earlier so lateness unchanged or improved
* Jobs running before J. in S: delayed by p.
Let J; be such a job. Its lateness in S’ is either O or
f—d <f°-d
f>—d,

<
< lateness of J. in S



Making change

Given coin denominations d,, d,, ..., d., what is the fewest coins
needed to make change C?

Show that giving the largest denomination possible is optimal if d; = 1,
d, =5, d;=10, and d,= 25 (n=4).



Making change

Claim: Giving the largest denomination possible is optimal (i.e. uses the fewest
coins)ifd; =1, d, =5, d3= 10, and d,;= 25 (n=4).

Proof: Suppose the optimal solution doesn’t use the largest possible
denomination X. We break into cases based on X.

It can’t be d;=1 since there isn’t anything smaller. Can’t be d,=5 since any
solution for C >= 5 cents using only d;s can be made better by replacing 5 of
them with a d,. Similarly, any solution for C >= 10 using only d;s and d,s has
coins totaling 10 that can be replaced with a d;.

Thus, suppose X is d;. By the reasoning above, the optimal solution must use
as many dss as possible. There can’t be 3 of these or replacing them with a d,
and a d, would reduce the number of coins. Therefore C must be in the range
25-29. Each of these can be eliminated by case analysis.



Application: Minimizing total flow

* Set of jobs {J;, J, ..., J,.}
* Job J, has duration p;and a release time r;
* A schedule S assigns jobs to run one at a time, J; starting at s> > r, and
finishing at f>=s°+ p.
* The job’s flow is f> -,
* Goal: Construct schedule that minimizes the total flow (sum of every
job’s flow) when every job’s release time is O (r, = O for all i)
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Application: Minimizing total flow

* Set of jobs {J;, J, ..., J,.}
* Job J, has duration p;and a release time r;
* A schedule S assigns jobs to run one at a time, J; starting at s> > r, and
finishing at f>=s°+ p.
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What algorithm should we try for this?

First-in first-out (min r; first)

Last-in first-out (max r; first)

Shortest processing time (min p; first)

Longest processing time (max p; first)

Let’s end class now and just do them all for HW
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Application: Minimizing total flow

* Set of jobs {J;, J, ..., J,.}

* Job J, has duration p;and a release time r;

* A schedule S assigns jobs to run one at a time, J; starting at s> > r, and
finishing at f>=s°+ p.
* The job’s flow is f> -,

* Goal: Construct schedule that minimizes the total flow (sum of every
job’s flow) when every job’s release time is O (r, = O for all i)

What algorithm should we try for this?

A. First-in first-out (min r, first)

Last-in first-out (max r; first)

Shortest processing time (min p; first)

Longest processing time (max p; first)

Let’s end class now and just do them all for HW
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Shortest Processing Time (SPT)

* Suppose SPT doesn’t give an optimal schedule

* Consider an optimal schedule and consider a place where it runs a
longer job J; immediately before a shorter job J;

* Swap the order of those jobs
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* Repeating this gives SPT while improving at every step
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Application: Encoding data

* How many bits does it take to encode 100 Java chars?
e Suppose you know they are all a thru e? How many bits per char?
* What if you know they have a specific frequency?

char a b C d e
#times | 47 11 20 5 17




Huffman encoding

char a b C d e
#times 47 11 20 5 17
encoding | O 1111 10 1110 | 110

e Length: 47 + 2*20 + 3*17 + 4*(11+5) = 202

\ Each term: length of encoding * #times
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char a b C d e
#times 47 11 20 5 17
encoding | O 1111 10 1110 | 110

e Length: 47 + 2*20 + 3*17 + 4*(11+5) = 202

\ Each term: {ength-of-encoding-* #times
depth in tree




