More greed!

10/23/24

Recall: Greedy algorithms

- Use a simple rule to pick part of the solution, generally in a locallybest way
- Then, prune choices this makes impossible and repeat
- Greedy algorithms don't always work, but they do for some problems
- Proving they work: Suppose the greedy rule doesn't allow an optimal solution. Take a solution that is optimal and change it to include the greedy choice. Show that this creates an optimal solution that (now) includes the greedy choice, contradicting the original assumption.

Application: Minimizing maximum lateness

- Set of jobs {J₁, J₂, ..., J_n}
 - Job \boldsymbol{J}_i has duration \boldsymbol{p}_i and deadline \boldsymbol{d}_i
- A schedule S assigns jobs to run one at a time, J_i starting at s_i^S and finishing at f_i^S = s_i^S + p_i
 - The job's lateness is max { 0, $f_i^s d_i$ }
- Goal: Construct schedule that minimizes maximum lateness

Application: Minimizing maximum lateness

- Set of jobs {J₁, J₂, ..., J_n}
 - Job \boldsymbol{J}_i has duration \boldsymbol{p}_i and deadline \boldsymbol{d}_i
- A schedule S assigns jobs to run one at a time, J_i starting at s_i^S and finishing at f_i^S = s_i^S + p_i
 - The job's lateness is max { 0, $f_i^s d_i$ }
- Goal: Construct schedule that minimizes maximum lateness
- Earliest Deadline First (EDF): Run the job with minimal d_i

Claim: There is a schedule minimizing max-lateness that starts with the job with earliest deadline

Let J_i be the job with earliest deadline and S be a schedule minimizing max-lateness that doesn't start with J_i .

Claim: There is a schedule minimizing max-lateness that starts with the job with earliest deadline

Let J_i be the job with earliest deadline and S be a schedule minimizing max-lateness that doesn't start with J_i .

WLOG, assume S doesn't include unnecessary idle time.

Claim: There is a schedule minimizing max-lateness that starts with the job with earliest deadline

Let J_i be the job with earliest deadline and S be a schedule minimizing max-lateness that doesn't start with J_i .

WLOG, assume S doesn't include unnecessary idle time.

Construct S' from S as follows:

- Start with J_i
- All jobs running before J_i in S are delayed by p_i
- All jobs running after J_i in S are unchanged

- Jobs running after J_i in S: No change in position so same lateness
- J_i itself: Runs earlier so lateness unchanged or improved

- Jobs running after J_i in S: No change in position so same lateness
- J_i itself: Runs earlier so lateness unchanged or improved
- Jobs running before J_i in S: delayed by p_i

- Jobs running after J_i in S: No change in position so same lateness
- J_i itself: Runs earlier so lateness unchanged or improved
- Jobs running before J_i in S: delayed by p_i

Let J_i be such a job. Its lateness in S' is either 0 or

$$f_j^{S'} - d_j$$

- Jobs running after J_i in S: No change in position so same lateness
- J_i itself: Runs earlier so lateness unchanged or improved
- Jobs running before J_i in S: delayed by p_i

Let J_i be such a job. Its lateness in S' is either 0 or

 $f_j^{S'} - d_j \leqslant f_i^S - d_j$

- Jobs running after J_i in S: No change in position so same lateness
- J_i itself: Runs earlier so lateness unchanged or improved
- Jobs running before J_i in S: delayed by p_i

Let J_i be such a job. Its lateness in S' is either 0 or

$$\begin{split} f_j^{S'} - d_j \leqslant f_i^S - d_j \\ \leqslant f_i^S - d_i \end{split}$$

- Jobs running after J_i in S: No change in position so same lateness
- J_i itself: Runs earlier so lateness unchanged or improved
- Jobs running before J_i in S: delayed by p_i

Let J_i be such a job. Its lateness in S' is either 0 or

$$f_{j}^{S'} - d_{j} \leqslant f_{i}^{S} - d_{j}$$
$$\leqslant f_{i}^{S} - d_{i}$$
$$\leqslant \text{ lateness of } J_{i} \text{ in } S$$

Making change

Given coin denominations d_1 , d_2 , ..., d_n , what is the fewest coins needed to make change C?

Show that giving the largest denomination possible is optimal if $d_1 = 1$, $d_2 = 5$, $d_3 = 10$, and $d_4 = 25$ (n=4).

Making change

Claim: Giving the largest denomination possible is optimal (i.e. uses the fewest coins) if $d_1 = 1$, $d_2 = 5$, $d_3 = 10$, and $d_4 = 25$ (n=4).

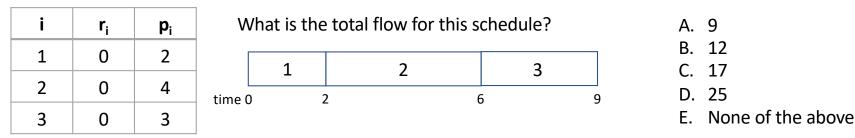
Proof: Suppose the optimal solution doesn't use the largest possible denomination X. We break into cases based on X.

It can't be $d_1=1$ since there isn't anything smaller. Can't be $d_2=5$ since any solution for C >= 5 cents using only d_1s can be made better by replacing 5 of them with a d_2 . Similarly, any solution for C >= 10 using only d_1s and d_2s has coins totaling 10 that can be replaced with a d_3 .

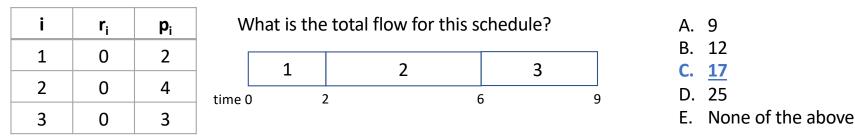
Thus, suppose X is d_4 . By the reasoning above, the optimal solution must use as many d_3s as possible. There can't be 3 of these or replacing them with a d_4 and a d_2 would reduce the number of coins. Therefore C must be in the range 25-29. Each of these can be eliminated by case analysis.

- Set of jobs {J₁, J₂, ..., J_n}
 - Job J_i has duration p_i and a release time \boldsymbol{r}_i
- A schedule S assigns jobs to run one at a time, J_i starting at $s_i^S \ge r_i$ and finishing at $f_i^S = s_i^S + p_i$
 - The job's flow is $f_i^s r_i$
- Goal: Construct schedule that minimizes the total flow (sum of every job's flow) when every job's release time is 0 (r_i = 0 for all i)

- Set of jobs $\{J_1, J_2, ..., J_n\}$
 - Job J_i has duration p_i and a release time \boldsymbol{r}_i
- A schedule S assigns jobs to run one at a time, J_i starting at s_i^S ≥ r_i and finishing at f_i^S = s_i^S + p_i
 - The job's flow is $f_i^S r_i$
- Goal: Construct schedule that minimizes the total flow (sum of every job's flow) when every job's release time is 0 (r_i = 0 for all i)



- Set of jobs $\{J_1, J_2, ..., J_n\}$
 - Job J_i has duration p_i and a release time \boldsymbol{r}_i
- A schedule S assigns jobs to run one at a time, J_i starting at $s_i^S \ge r_i$ and finishing at $f_i^S = s_i^S + p_i$
 - The job's flow is $f_i^S r_i$
- Goal: Construct schedule that minimizes the total flow (sum of every job's flow) when every job's release time is 0 (r_i = 0 for all i)



- Set of jobs $\{J_1, J_2, ..., J_n\}$
 - Job J_i has duration p_i and a release time \boldsymbol{r}_i
- A schedule S assigns jobs to run one at a time, J_i starting at s_i^S ≥ r_i and finishing at f_i^S = s_i^S + p_i
 - The job's flow is $f_i^S r_i$
- Goal: Construct schedule that minimizes the total flow (sum of every job's flow) when every job's release time is 0 (r_i = 0 for all i)

What algorithm should we try for this?

- A. First-in first-out (min r_i first)
- B. Last-in first-out (max r_i first)
- C. Shortest processing time (min p_i first)
- D. Longest processing time (max p_i first)
- E. Let's end class now and just do them all for HW

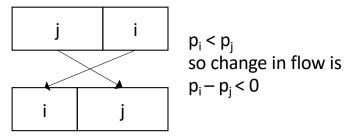
- Set of jobs {J₁, J₂, ..., J_n}
 - Job J_i has duration p_i and a release time \boldsymbol{r}_i
- A schedule S assigns jobs to run one at a time, J_i starting at s_i^S ≥ r_i and finishing at f_i^S = s_i^S + p_i
 - The job's flow is $f_i^S r_i$
- Goal: Construct schedule that minimizes the total flow (sum of every job's flow) when every job's release time is 0 (r_i = 0 for all i)

What algorithm should we try for this?

- A. First-in first-out (min r_i first)
- B. Last-in first-out (max r_i first)
- C. <u>Shortest processing time (min p_i first)</u>
- D. Longest processing time (max p_i first)
- E. Let's end class now and just do them all for HW

Shortest Processing Time (SPT)

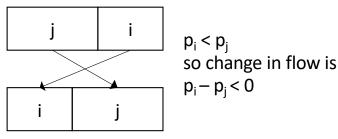
- Suppose SPT doesn't give an optimal schedule
- Consider an optimal schedule and consider a place where it runs a longer job J_i immediately before a shorter job J_i
- Swap the order of those jobs



• Repeating this gives SPT while improving at every step

Shortest Processing Time (SPT)

- Suppose SPT doesn't give an optimal schedule
- Consider an optimal schedule and consider a place where it runs a longer job J_j immediately before a shorter job J_i
- Swap the order of those jobs

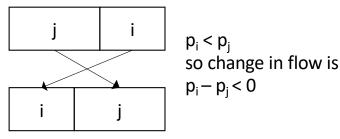


Does it still work if we remove the requirement that r_i = 0 for all i? (Whenever idle, start the shortest job that has been released.) A. Yes B. No Either adapt the proof or give a counterexample

• Repeating this gives SPT while improving at every step

Shortest Processing Time (SPT)

- Suppose SPT doesn't give an optimal schedule
- Consider an optimal schedule and consider a place where it runs a longer job J_i immediately before a shorter job J_i
- Swap the order of those jobs



Does it still work if we remove the requirement that $r_i = 0$ for all i? (Whenever idle, start the shortest job that has been released.) A. Yes B. <u>No</u> Either adapt the proof or give a counterexample

• Repeating this gives SPT while improving at every step

• How many bits does it take to encode 100 Java chars?

- How many bits does it take to encode 100 Java chars?
 - Suppose you know they are all a thru e? How many bits per char?
 - A. 1
 - B. 2
 - C. 3
 - D. 5
 - E. None of the above

- How many bits does it take to encode 100 Java chars?
 - Suppose you know they are all a thru e? How many bits per char?
 - A. 1
 - B. 2
 - C. <u>3</u>
 - D. 5
 - E. None of the above

- How many bits does it take to encode 100 Java chars?
 - Suppose you know they are all a thru e? How many bits per char?
 - What if you know they have a specific frequency?

char	а	b	С	d	е
#times	47	11	20	5	17

Huffman encoding

char	а	b	С	d	е
#times	47	11	20	5	17
encoding	0	1111	10	1110	110

• Length: 47 + 2*20 + 3*17 + 4*(11+5) = 202

Each term: length of encoding * #times

Huffman encoding

char	а	b	С	d	е
#times	47	11	20	5	17
encoding	0	1111	10	1110	110

• Length: 47 + 2*20 + 3*17 + 4*(11+5) = 202

Each term: length of encoding * #times depth in tree

