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Recall: Greedy algorithms

• Use a simple rule to pick part of the solution, generally in a locally-
best way
• Then, prune choices this makes impossible and repeat
• Greedy algorithms don’t always work, but they do for some problems

• Proving they work: Suppose the greedy rule doesn’t allow an optimal 
solution.  Take a solution that is optimal and change it to include the 
greedy choice.  Show that this creates an optimal solution that (now) 
includes the greedy choice, contradicting the original assumption.



Application: Minimizing maximum lateness

• Set of jobs {J1, J2, …, Jn}
• Job Ji has duration pi and deadline di

• A schedule S assigns jobs to run one at a time, Ji starting at si
S and 

finishing at fi
S = si

S + pi
• The job’s lateness is max { 0, fi

S – di }

• Goal: Construct schedule that minimizes maximum lateness
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• Earliest Deadline First (EDF): Run the job with minimal di



Claim: There is a schedule minimizing max-lateness 
that starts with the job with earliest deadline
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Claim: There is a schedule minimizing max-lateness 
that starts with the job with earliest deadline

Let Ji be the job with earliest deadline and S be a schedule minimizing max-lateness 
that doesn’t start with Ji.  

WLOG, assume S doesn’t include unnecessary idle time.

Construct S’ from S as follows: 
• Start with Ji
• All jobs running before Ji in S are delayed by pi
• All jobs running after Ji in S are unchanged



Looking at latenesses

• Jobs running after Ji in S: No change in position so same lateness
• Ji itself: Runs earlier so lateness unchanged or improved
• Jobs running before Ji in S: delayed by pi

 Let Jj be such a job.  Its lateness in S’ is either 0 or
  fj

S’ – dj ⩽ fi
S – dj

    ⩽ fi
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    ⩽ lateness of Ji in S
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Making change

Given coin denominations d1, d2, ..., dn, what is the fewest coins 
needed to make change C?

Show that giving the largest denomination possible is optimal if d1 = 1, 
d2 = 5, d3= 10, and d4= 25 (n=4).



Making change

Claim: Giving the largest denomination possible is optimal (i.e. uses the fewest 
coins) if d1 = 1, d2 = 5, d3= 10, and d4= 25 (n=4).
Proof: Suppose the optimal solution doesn’t use the largest possible 
denomination X.  We break into cases based on X.
It can’t be d1=1 since there isn’t anything smaller.  Can’t be d2=5 since any 
solution for C >= 5 cents using only d1s can be made better by replacing 5 of 
them with a d2.  Similarly, any solution for C >= 10 using only d1s and d2s has 
coins totaling 10 that can be replaced with a d3.
Thus, suppose X is d4. By the reasoning above, the optimal solution must use 
as many d3s as possible.  There can’t be 3 of these or replacing them with a d4 
and a d2 would reduce the number of coins. Therefore C must be in the range 
25-29.  Each of these can be eliminated by case analysis.



Application: Minimizing total flow

• Set of jobs {J1, J2, …, Jn}
• Job Ji has duration pi and a release time ri

• A schedule S assigns jobs to run one at a time, Ji starting at si
S ≥ ri and 

finishing at fi
S = si

S + pi
• The job’s flow is fi

S - ri 

• Goal: Construct schedule that minimizes the total flow (sum of every 
job’s flow) when every job’s release time is 0 (ri = 0 for all i)
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1 2 3
time 0 2 6 9
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Shortest Processing Time (SPT)

• Suppose SPT doesn’t give an optimal schedule
• Consider an optimal schedule and consider a place where it runs a 

longer job Jj immediately before a shorter job Ji

• Swap the order of those jobs

• Repeating this gives SPT while improving at every step

j i

i j

pi < pj
so change in flow is
pi – pj < 0 
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A. Yes
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Either adapt the proof or give a counterexample
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Application: Encoding data

• How many bits does it take to encode 100 Java chars?
• Suppose you know they are all a thru e? How many bits per char?
• What if you know they have a specific frequency?

char a b c d e
#times 47 11 20 5 17



Huffman encoding

• Length: 47 + 2*20 + 3*17 + 4*(11+5) = 202 

char a b c d e

#times 47 11 20 5 17
encoding 0 1111 10 1110 110

Each term: length of encoding * #times



Huffman encoding

• Length: 47 + 2*20 + 3*17 + 4*(11+5) = 202 

char a b c d e

#times 47 11 20 5 17
encoding 0 1111 10 1110 110

a

c
e

d b

0

0

0

0

1

1

1

1

Each term: length of encoding * #times
                     depth in tree


