
More more greed!
10/24/24



Recall: Greedy algorithms

• Use a simple rule to pick part of the solution, generally in a locally-
best way
• Then, prune choices this makes impossible and repeat
• Greedy algorithms don’t always work, but they do for some problems

• Proving they work: Suppose the greedy rule doesn’t allow an optimal 
solution.  Take a solution that is optimal and change it to include the 
greedy choice.  Show that this creates an optimal solution that (now) 
includes the greedy choice, contradicting the original assumption.



Recall: Huffman encoding

• Length: 47 + 2*20 + 3*17 + 4*(11+5) = 202 
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Each term: length of encoding * #times
                     depth in tree



Huffman encoding

• Length: 47 + 2*20 + 3*17 + 4*(11+5) = 202 

char a b c d e

#times 47 11 20 5 17

encoding 0 1111 10 1110 110
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Start with a node for each char
While there is more than one node,
 Combine 2 nodes w/ lowest frequencies
 //Combined node has sum of frequencies

Each term: length of encoding * #times
                     depth in tree



Create a Huffman encoding for characters a-e 
with the frequency distribution below

letter a b c e d f

frequency 18 6 31 12 10 23



Picking letter depths

Give an input for the Huffman coding algorithm that will cause it to 
have one letter at depth 1, three at depth 3, and 2 at depth 4. (Recall 
that the depth of a node is the number of edges that must be traversed 
from the tree’s root to reach it.) Include the instance (the letters and 
their frequencies) and describe how the algorithm constructs the 
Huffman encoding tree for this input. 



Are you here?

A. Yes

B. Affirmative

C. Absolutely

D. Definitely

E. More than one of the above



Key part of the argument
Lemma: Let x and y be two characters having the lowest frequencies.  Then there 
exists an optimal prefix code in which the codewords for x and y have the same 
length and differ only in the last bit

Proof: WLOG, assume x.freq ⩽ y.freq
Let T be the tree of an optimal prefix code. 
Let a and b be sibling nodes at the lowest level with a.freq ⩽ b.freq.
Case 1: x.freq = b.freq
 Then a.freq = b.freq = x.freq = y.freq and can freely substitute.
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Key part of the argument
Lemma: Let x and y be two characters having the lowest frequencies.  Then there 
exists an optimal prefix code in which the codewords for x and y have the same 
length and differ only in the last bit

Proof: WLOG, assume x.freq ⩽ y.freq
Let T be the tree of an optimal prefix code. 
Let a and b be sibling nodes at the lowest level with a.freq ⩽ b.freq.
Case 2: x.freq != b.freq  (and hence x != b)
  Let T’ be T, but swapping a and x.  The difference in the encoded length is
          x.freq * dT(x) + a.freq * dT(a) – x.freq * dT’(x) – a.freq * dT’(a)
     =   x.freq * dT(x) + a.freq * dT(a) – x.freq * dT(a) – a.freq * dT(x)
     =   (a.freq – x.freq)(dT(a) – dT(x))
     ≥   0
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Key part of the argument
Lemma: Let x and y be two characters having the lowest frequencies.  Then there 
exists an optimal prefix code in which the codewords for x and y have the same 
length and differ only in the last bit

Case 2 continued: 
Let T’’ be T’, but swapping b and y.  The difference in the encoded length is
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Key part of the argument
Lemma: Let x and y be two characters having the lowest frequencies.  Then there 
exists an optimal prefix code in which the codewords for x and y have the same 
length and differ only in the last bit

Case 2 continued: 
Let T’’ be T’, but swapping b and y.  The difference in the encoded length is
          y.freq * dT’(y) + b.freq * dT’(b) – y.freq * dT’’(y) – b.freq * dT’’(b)
     =   y.freq * dT’(y) + b.freq * dT’(b) – y.freq * dT’(b) – b.freq * dT’(y)
     =   (b.freq – y.freq)(dT’(b) – dT’(y))
     ≥   0
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More scheduling

In another version of scheduling with deadlines, job Ji has a release time ri before 
which it cannot be run, a duration pi which is how long it must run, and a deadline 
di before which it must finish. The system is allowed to switch between jobs in the 
middle (called preemption); at each time step, it must select one unfinished job to 
work on. Job Ji is finished after it has been selected pi times. 
In this setting, the Earliest Deadline First (EDF) algorithm works on the job with the 
earliest deadline among the jobs that have been released and not yet finished. 
Prove that this version of EDF will complete every job by its deadline if this is 
possible. (You want to assume that there is a schedule that completes every job by 
its deadline and follows the EDF schedule as long as possible.  Then look at the first 
time this schedule chooses a different job than EDF and construct a schedule that 
follows the EDF algorithm for another time step and still completes all jobs by their 
deadline.) 


