
Algorithm design and analysis

9/9/24

What is an algorithm?

• From Wikipedia:
 An algorithm is an effective method expressed as a

finite list of well-defined instructions for calculating a
function. (http://en.wikipedia.org/wiki/Algorithm)

• Solution to computational problem NOT tied
to a specific programming language
– often expressed in pseudocode with similar structure but

looser syntax than “real” programming languages

http://en.wikipedia.org/wiki/Algorithm

This course

• Text: “Introduction to Algorithms” (CLRS 4th ed)
• Builds on CS 142, but focus on proofs rather than

programming
• Most students take it late in their time at Knox

• Peer Instruction, plus working on problems
• Reading before class (sometimes w/ reading-quiz)
• HWs and exams (2 midterms and a final)

Collaboration
(One slide version; read the syllabus)

• You are encouraged to work on the problem
sets in small groups

• Just be sure that you:
– Credit everyone that you collaborate with and

every outside source you consult
–Write up your solution on your own and

completely understand it yourself

Administrivia

• Join Google Classroom (email me if not invited)
• Review binary search tree operations; expect RQ
• Review Induction

Arrays with fast initialization

Based on Lewis and Denenberg, “Data
Structures & Their Algorithms”, Harper

Collins Press, pp. 136-138, 1991.

Recall: Abstract Data Types (ADTs)

• Set of operations that are supported

• Does not specify implementation and may
have different “good” implementations
– Ex: List ADT (add to end, add to front, read value

at given index, remove from end, ...) can be
implemented using an array or a (singly- or
doubly-) linked list

How many of the following operations are
asymptotically faster in an array-based list

than in a doubly-linked list with a tail pointer?
I. addFront II. add III. get(i) IV. removeLast

A. 0
B. 1
C. 2
D. 3
E. 4

How many of the following operations are
asymptotically faster in an array-based list

than in a doubly-linked list with a tail pointer?
I. addFront II. add III. get(i) IV. removeLast

A. 0
B. 1 (just III)
C. 2
D. 3
E. 4

Array ADT

• Constructor
• Way to read ith cell

 T access(int index)

• Way to set ith cell
 void assign(int index, T value)

• Way to set all cells to given value
 void initialize(T value)

“Standard” implementation

• In C
– Contiguous memory, with address arithmetic to

access/assign cells
– Use loop for initialization

• In Java
– Constructor includes initialization
– Adds bounds checking

Idea 1: Default value

• Store separate “default” value
– value of cells not changed since last initialization

Now, access “just” checks whether an index has
been updated since the last initialization

default

values
0 1 2 3 4 5 6 7

Idea 2: Keep list of changes

default

values

0 1 2 3 4 5 6 7

num_changed

changed

Idea 3: Store index locations
• Stores where in list each index occurs

default

values

0 1 2 3 4 5 6 7

num_changed

changed

where

(hint how to find the index)

