Multithreaded algorithms

9/23/24

Administrivia
* HW 2 (AVL trees and Divide & Conquer) due tomorrow night

* Reading: Rest of 26.1 due Wednesday

e Join the CS Club! (Tuesdays 4pm in SMC A201)

Big Picture

* Essentially every computer is now multicore
* Means it can run multiple parts of a program at the same time

* Threads
* Main abstraction for shared memory computing
e Each can run independently

Computation as a DAG (directed acyclic graph)

AN
N

Can represent runtime behavior using a
DAG (directed acyclic graph)

Edges show precedence constraints
Vertices are strands (sequence of

instructions that don’t have an outside
precedence constraint or satisfy one)

Computation as a DAG (directed acyclic graph)

AN
N

Can represent runtime behavior using a
DAG (directed acyclic graph)

Edges show precedence constraints

Vertices are strands (sequence of
instructions that don’t have an outside
precedence constraint or satisfy one)

Metrics:
Work T, = time on one processor
Span T, = length of longest path

Naive Fibonacci implementation

Fib(n)
if(n <= 1)
return n
else
X = Fib(n-1)
y = Fib(n-2)

return x +vy

Parallel version

Allows child procedure to run in

P_Fib(n) parallel with its parent
if(n <= 1)
return n
else
X = spawn P_Fib(n-1)
y = P_Fib(n-2)
sync
return x +y Causes parent to wait for all

children to complete

Combining subcomputations

o | - R
N

Combining subcomputations

—» A | B [/A\‘
e

Work: T,(A) + T,(B) Work: T,(A) + T,(B)

Combining subcomputations

.

—» A —» B [— /

.

E

Work: T,(A) + T,(B) Work: T,(A) + T,(B)

Span: T (A) + T ..(B) Span: max{ T_(A), T ..(B) }

Which of the following is a lower bound on T,
the time on p processors?

A. T;+p
B. T;-p
C. pTy
D. T,/p

E. Not exactly one of the above

Which of the following is a lower bound on T,
the time on p processors?

A. T;+p

B. T;-p

C. pTy

D. Ilj_g (called the work law)

E. Not exactly one of the above

Which of the following is a lower bound on T,
the time on p processors?

A. T

B. T..-p

D. T./p

E. Not exactly one of the above

Which of the following is a lower bound on T,
the time on p processors?

A T, (called the span law)

B. T..-p

E. Not exactly one of the above

Th: With p processors, any scheduler that is never
voluntarily idle completes a computation in time
T, <T/p+T.

Th: With p processors, any scheduler that is never
voluntarily idle completes a computation in time
T, <T/p+T.

Corollary: The running time of any such scheduler
IS within a factor of 2 of optimal

Th: With p processors, any scheduler that is never
voluntarily idle completes a computation in time
T, <T/p+T.

Corollary: The running time of any such scheduler
IS within a factor of 2 of optimal

Another metric: parallelism =T,/ T,

(intuitively, the number of processors we can use)

Th: With p processors, any scheduler that is never
voluntarily idle completes a computation in time
T, <T/p+T.

Proof: Charge each time step to one of the terms.

Th: With p processors, any scheduler that is never
voluntarily idle completes a computation in time
T, <T/p+T.

Proof: Charge each time step to one of the terms.
Charge complete steps (when all processors are busy) to T,/p.

Th: With p processors, any scheduler that is never

voluntarily idle completes a computation in time
T, <T/p+T.

Proof: Charge each time step to one of the terms.

Charge complete steps (when all processors are busy) to T,/p.
Suppose to contrary that every processor is busy > | T;/p| time steps.

Th: With p processors, any scheduler that is never
voluntarily idle completes a computation in time
T, <T/p+T.

Proof: Charge each time step to one of the terms.

Charge complete steps (when all processors are busy) to T,/p.
Suppose to contrary that every processor is busy > | T;/p| time steps.
Then these steps do work 2 p(|T,/p| + 1) =p |T:/p] + p

Th: With p processors, any scheduler that is never
voluntarily idle completes a computation in time
T, <T/p+T.

Proof: Charge each time step to one of the terms.
Charge complete steps (when all processors are busy) to T,/p.
Suppose to contrary that every processor is busy > | T;/p| time steps.
Then these steps do work 2 p(|T,/p| + 1) =p |T:/p] + p

=T, —(T;mod p) +p

Th: With p processors, any scheduler that is never
voluntarily idle completes a computation in time
T, <T/p+T.

Proof: Charge each time step to one of the terms.
Charge complete steps (when all processors are busy) to T,/p.
Suppose to contrary that every processor is busy > | T;/p| time steps.
Then these steps do work 2 p(|T,/p| + 1) =p |T:/p] + p
=T,—(Tymod p) +p
> T,

Th: With p processors, any scheduler that is never
voluntarily idle completes a computation in time
T, <T/p+T.

Proof: Charge each time step to one of the terms.
Charge complete steps (when all processors are busy) to T,/p.
Suppose to contrary that every processor is busy > | T;/p| time steps.
Then these steps do work 2 p(|T,/p| + 1) =p |T:/p] + p
=T,—(Tymod p) +p
> T,

Charge incomplete steps (at least one processor idle) to T...

Th: With p processors, any scheduler that is never
voluntarily idle completes a computation in time
T, <T/p+T.

Proof: Charge each time step to one of the terms.
Charge complete steps (when all processors are busy) to T,/p.
Suppose to contrary that every processor is busy > | T;/p| time steps.
Then these steps do work 2 p(|T,/p| + 1) =p |T:/p] + p
=T,—(Tymod p) +p
> T,

Charge incomplete steps (at least one processor idle) to T...

If a processor is idle, it must schedule every strand w/o incomplete
prerequisites. Every path must start with one of these, so this shortens
every critical path, which can happen at most T.. times.

What is the span of the following code?
for(inti=0; i < n; i++)
spawn Ali] = Bli];
SyNncC
A. 8(1)
8(log n)
@(nl/Z)
&(n)
None of the above

m o O W

What is the span of the following code?
for(inti=0; i < n; i++)
spawn Ali] = Bli];
Sync
A. 8(1)
8(log n)
@(nl/Z)
. 8(n)

None of the above

m o O W

Alternate idea of a for loop

void do _it(ints, int e) {
if(s==e)
Als] = B[s]
else {
spawn do _it(s, (s+e)/2)
do_it((s+e)/2+1, e)
Sync

}

do it(O,n-1)

What recurrence gives the work of this?

void do _it(ints, int e) {
if(s ==e)
A[s] = B[s]
else {
spawn do _it(s, (s+e)/2) X‘ ?ricna)tztf;f(ﬁj);;orl)

do_it((s+e)/2+1, e)
SVale B. Ty(n) =T4(n/2) + n
) C. T{(n)=2T,(n/2) +1

! D. T{(n) =2T,(n/2) + n
E. None of the above
do it(O,n-1)

What recurrence gives the work of this?

void do _it(ints, int e) {
if(s==e)
Als] = B[s]
else {

do_it(s, (s+e)/2)
;Fz)a_\?’;?(sfe)l/zfrl,se)e A. Ty(n) =Ty(n/2) + 1

sync B. T;(n) =Ty(n/2) + n
) C.Ty(n)=2Ty(n/2) +1
! D. T{(n) =2T,(n/2) + n
E. None of the above

(n set at the bottom)

.c;I.o_it(O,n—l)

What is the work of this?

void do _it(ints, int e) {

if(s==e)
Als] = B[s]
else {
spawn do _it(s, (s+e)/2)
do_it((s+e)/2+1, e) A. 8(1)
sync B. 8(log n)
} C. 8(n)
} D. 8(n log n)
E. None of the above

do it(O,n-1)

What is the work of this?

void do _it(ints, int e) {
if(s==e)
Als] = B[s]
else {
spawn do _it(s, (s+e)/2)
do_it((s+e)/2+1, e) (1)
sync 6(log n)

A.
B.

} C. 8(n)
D.
E.

o)
S =

}

do it(O,n-1)

8(n log n)
None of the above

What is the span?

void do _it(ints, int e) {

if(s ==e)
Als] = B[s]
else {
spawn do _it(s, (s+e)/2)
do it((s+e)/2+1, e) A. 8(1)
SYNC B. 8(log n)
} C. 8(n%>)
} D. 8(n)
E. None of the above

.cil.o_it(O,n—l)

What is the span?

void do _it(ints, int e) {
if(s==e)
Als] = B[s]
else {
spawn do _it(s, (s+e)/2)

do_it((s+e)/2+1, e) A. 8(1)
SYNC B. 8(log n)
} C. 8(n%>)
J D. 8(n)

E. None of the above
do it(O,n-1)

Parallel for loop

* New syntax:

parallel fori=1ton

» Syntactic sugar for recursive routine that divides domain in half,
running the calls in parallel, and then executes a single iteration

