
Multithreaded algorithms
9/23/24



Administrivia

• HW 2 (AVL trees and Divide & Conquer) due tomorrow night

• Reading: Rest of 26.1 due Wednesday

• Join the CS Club!  (Tuesdays 4pm in SMC A201)



Big Picture

• Essentially every computer is now multicore
• Means it can run multiple parts of a program at the same time

• Threads
• Main abstraction for shared memory computing
• Each can run independently



Computation as a DAG (directed acyclic graph)
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Can represent runtime behavior using a 
DAG (directed acyclic graph)

Edges show precedence constraints

Vertices are strands (sequence of 
instructions that don’t have an outside 
precedence constraint or satisfy one)
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Can represent runtime behavior using a 
DAG (directed acyclic graph)

Edges show precedence constraints

Vertices are strands (sequence of 
instructions that don’t have an outside 
precedence constraint or satisfy one)

Metrics:
     Work T1 = time on one processor
     Span T∞ = length of longest path



Naïve Fibonacci implementation

Fib(n)
 if(n <= 1)
  return n
 else
  x = Fib(n-1)
  y = Fib(n-2)
  return x + y



Parallel version

P_Fib(n)
 if(n <= 1)
  return n
 else
  x = spawn P_Fib(n-1)
  y = P_Fib(n-2)
  sync
  return x + y

Allows child procedure to run in 
parallel with its parent

Causes parent to wait for all 
children to complete
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Combining subcomputations

Work: T1(A) + T1(B)

Span: T∞(A) + T ∞(B)

Work: T1(A) + T1(B)

Span: max{ T∞(A), T ∞(B) }
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Which of the following is a lower bound on Tp, 
the time on p processors?

A. T1 + p

B. T1 - p

C. p T1

D. T1 / p

E. Not exactly one of the above
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Which of the following is a lower bound on Tp, 
the time on p processors?

A. T∞  (called the span law)

B. T∞ - p

C. pT∞

D. T∞ / p

E. Not exactly one of the above



Th: With p processors, any scheduler that is never 
voluntarily idle completes a computation in time
    Tp ⩽ T1/p + T∞
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Th: With p processors, any scheduler that is never 
voluntarily idle completes a computation in time
    Tp ⩽ T1/p + T∞

Corollary: The running time of any such scheduler 
is within a factor of 2 of optimal

Another metric: parallelism = T1/ T∞ 
  (intuitively, the number of processors we can use)



Th: With p processors, any scheduler that is never 
voluntarily idle completes a computation in time
    Tp ⩽ T1/p + T∞

Proof: Charge each time step to one of the terms.
Charge complete steps (when all processors are busy) to T1/p.
Suppose to contrary that every processor is busy > ⌊T1/p⌋ time steps.
Then these steps do work ≥ p(⌊T1/p⌋ + 1) = p ⌊T1/p⌋ + p
       = T1 – (T1 mod p) + p
       > T1

Charge incomplete steps (at least one processor idle) to T∞.
If a processor is idle, it must schedule every strand w/o incomplete 
prerequisites.  Every path must start with one of these, so this shortens 
every critical path, which can happen at most T∞ times.
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What is the span of the following code?
for(int i=0; i < n; i++)
 spawn A[i] = B[i];
sync
A. ⍬(1)
B. ⍬(log n)
C. ⍬(n1/2)
D. ⍬(n)
E. None of the above



What is the span of the following code?
for(int i=0; i < n; i++)
 spawn A[i] = B[i];
sync
A. ⍬(1)
B. ⍬(log n)
C. ⍬(n1/2)
D. ⍬(n)
E. None of the above



  Alternate idea of a for loop

 void do_it(int s, int e) {
  if(s == e)
   A[s] = B[s]
  else {
   spawn do_it(s, (s+e)/2)
   do_it((s+e)/2+1, e)
   sync
  }
 }
 …
 do_it(0,n-1)



What recurrence gives the work of this?

 void do_it(int s, int e) {
  if(s == e)
   A[s] = B[s]
  else {
   spawn do_it(s, (s+e)/2)
   do_it((s+e)/2+1, e)
   sync
  }
 }
 …
 do_it(0,n-1)

(n set at the bottom)
A. T1(n) = T1(n/2) + 1
B. T1(n) = T1(n/2) + n
C. T1(n) = 2T1(n/2) + 1
D. T1(n) = 2T1(n/2) + n
E.  None of the above
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Parallel for loop

• New syntax:
 parallel for i = 1 to n

• Syntactic sugar for recursive routine that divides domain in half, 
running the calls in parallel, and then executes a single iteration


