Multithreaded algorithms

9/23/24

Administrivia

- HW 2 (AVL trees and Divide & Conquer) due tomorrow night
- Reading: Rest of 26.1 due Wednesday
- Join the CS Club! (Tuesdays 4pm in SMC A201)

Big Picture

- Essentially every computer is now multicore
 - Means it can run multiple parts of a program at the same time
- Threads
 - Main abstraction for shared memory computing
 - Each can run independently

Computation as a DAG (directed acyclic graph)

Can represent runtime behavior using a DAG (directed acyclic graph)

Edges show precedence constraints

Vertices are strands (sequence of instructions that don't have an outside precedence constraint or satisfy one)

Computation as a DAG (directed acyclic graph)

Can represent runtime behavior using a DAG (directed acyclic graph)

Edges show precedence constraints

Vertices are strands (sequence of instructions that don't have an outside precedence constraint or satisfy one)

Metrics:

Work T_1 = time on one processor Span T_{∞} = length of longest path

Naïve Fibonacci implementation

```
Fib(n)

if(n <= 1)

return n

else

x = Fib(n-1)

y = Fib(n-2)

return x + y
```

Parallel version

Combining subcomputations

Combining subcomputations

Work: $T_1(A) + T_1(B)$

Work: $T_1(A) + T_1(B)$

Combining subcomputations

Work: $T_1(A) + T_1(B)$

Span: $T_{\infty}(A) + T_{\infty}(B)$

Work: $T_1(A) + T_1(B)$

Span: max{ $T_{\infty}(A)$, $T_{\infty}(B)$ }

- A. T₁ + p
- B. T₁ p
- C. p T₁
- D. T_1/p
- E. Not exactly one of the above

- A. T₁ + p
- B. T₁ p
- C. pT_1
- D. $\underline{T}_1 / \underline{p}$ (called the work law)
- E. Not exactly one of the above

A. T_{∞}

- B. $T_{\infty} p$
- C. pT_{∞}
- D. T_{∞}/p
- E. Not exactly one of the above

- A. \underline{T}_{∞} (called the span law)
- B. $T_{\infty} p$
- C. pT_{∞}
- D. T_{∞}/p
- E. Not exactly one of the above

Corollary: The running time of any such scheduler is within a factor of 2 of optimal

Corollary: The running time of any such scheduler is within a factor of 2 of optimal

Another metric: parallelism = T_1/T_{∞} (intuitively, the number of processors we can use)

Proof: Charge each time step to one of the terms.

$$T_p \leqslant T_1/p + T_\infty$$

Proof: Charge each time step to one of the terms. Charge complete steps (when all processors are busy) to T_1/p .

$$T_p \leqslant T_1/p + T_\infty$$

Proof: Charge each time step to one of the terms. Charge complete steps (when all processors are busy) to T_1/p . Suppose to contrary that every processor is busy > $[T_1/p]$ time steps.

 $T_p \leq T_1/p + T_\infty$

Proof: Charge each time step to one of the terms. Charge complete steps (when all processors are busy) to T_1/p . Suppose to contrary that every processor is busy > $[T_1/p]$ time steps. Then these steps do work ≥ $p([T_1/p] + 1) = p [T_1/p] + p$

 $T_p \leq T_1/p + T_\infty$

Proof: Charge each time step to one of the terms. Charge complete steps (when all processors are busy) to T_1/p . Suppose to contrary that every processor is busy > $[T_1/p]$ time steps. Then these steps do work ≥ $p([T_1/p] + 1) = p [T_1/p] + p$ = $T_1 - (T_1 \mod p) + p$

 $T_p \leq T_1/p + T_\infty$

> T₁

Proof: Charge each time step to one of the terms. Charge complete steps (when all processors are busy) to T_1/p . Suppose to contrary that every processor is busy > $[T_1/p]$ time steps. Then these steps do work ≥ $p([T_1/p] + 1) = p [T_1/p] + p = T_1 - (T_1 \mod p) + p$

 $T_p \leq T_1/p + T_\infty$

Proof: Charge each time step to one of the terms. Charge complete steps (when all processors are busy) to T_1/p . Suppose to contrary that every processor is busy > $[T_1/p]$ time steps. Then these steps do work ≥ $p([T_1/p] + 1) = p [T_1/p] + p$ $= T_1 - (T_1 \mod p) + p$ > T_1

Charge incomplete steps (at least one processor idle) to T_{∞} .

 $T_p \leqslant T_1/p + T_\infty$

Proof: Charge each time step to one of the terms. Charge complete steps (when all processors are busy) to T_1/p . Suppose to contrary that every processor is busy > $[T_1/p]$ time steps. Then these steps do work ≥ $p([T_1/p] + 1) = p [T_1/p] + p$ $= T_1 - (T_1 \mod p) + p$ > T_1

Charge incomplete steps (at least one processor idle) to T_{∞} . If a processor is idle, it must schedule every strand w/o incomplete prerequisites. Every path must start with one of these, so this shortens every critical path, which can happen at most T_{∞} times.

```
What is the span of the following code?
for(int i=0; i < n; i++)
spawn A[i] = B[i];
sync
A. \theta(1)
```

- B. ⊕(log n)
- C. ϑ(n^{1/2})
- D. ϑ(n)
- E. None of the above

```
What is the span of the following code?
for(int i=0; i < n; i++)
spawn A[i] = B[i];
sync
A. θ(1)
```

- B. ⊕(log n)
- C. ϑ(n^{1/2})
- D. <u>ϑ(n)</u>
- E. None of the above

Alternate idea of a for loop

```
void do_it(int s, int e) {
    if(s == e)
        A[s] = B[s]
    else {
        spawn do_it(s, (s+e)/2)
        do_it((s+e)/2+1, e)
        sync
        }
}
...
do_it(0,n-1)
```

What recurrence gives the work of this?

```
void do_it(int s, int e) {
    if(s == e)
        A[s] = B[s]
    else {
        spawn do_it(s, (s+e)/2)
        do_it((s+e)/2+1, e)
        sync
        }
}...
do_it(0,n-1)
```

```
(n set at the bottom)
A. T_1(n) = T_1(n/2) + 1
B. T_1(n) = T_1(n/2) + n
C. T_1(n) = 2T_1(n/2) + 1
D. T_1(n) = 2T_1(n/2) + n
E. None of the above
```

What recurrence gives the work of this?

```
void do_it(int s, int e) {
    if(s == e)
        A[s] = B[s]
    else {
        spawn do_it(s, (s+e)/2)
        do_it((s+e)/2+1, e)
        sync
      }
}
...
do_it(0,n-1)
```

```
(n set at the bottom)
A. T_1(n) = T_1(n/2) + 1
B. T_1(n) = T_1(n/2) + n
C. T_1(n) = 2T_1(n/2) + 1
D. T_1(n) = 2T_1(n/2) + n
E. None of the above
```

What is the work of this?

```
void do_it(int s, int e) {

if(s == e)

A[s] = B[s]

else {

spawn do_it(s, (s+e)/2)

do_it((s+e)/2+1, e)

sync

}

A. \theta(1)

B. \theta(log n)

C. \theta(n)

D. \theta(n log n)

...

do it(0,n-1)

E. None of the above
```

What is the work of this?

```
void do_it(int s, int e) {

if(s == e)

A[s] = B[s]

else {

spawn do_it(s, (s+e)/2)

do_it((s+e)/2+1, e)

sync

}

A. \vartheta(1)

B. \vartheta(\log n)

C. \vartheta(n)

D. \vartheta(n \log n)

E. None of the above
```

What is the span?

```
void do_it(int s, int e) {

if(s == e)

A[s] = B[s]

else {

spawn do_it(s, (s+e)/2)

do_it((s+e)/2+1, e)

sync

}

A. \theta(1)

B. \theta(log n)

C. \theta(n^{0.5})

D. \theta(n)

...

do it(0,n-1)
```

What is the span?

```
void do_it(int s, int e) {

if(s == e)

A[s] = B[s]

else {

spawn do_it(s, (s+e)/2)

do_it((s+e)/2+1, e)

} A. \theta(1)

B. \frac{\theta(log n)}{(log n)}

C. \theta(n^{0.5})

D. \theta(n)

...

do it(0,n-1)
```

Parallel for loop

• New syntax:

parallel for i = 1 to n

• Syntactic sugar for recursive routine that divides domain in half, running the calls in parallel, and then executes a single iteration