
More multithreading
9/25/24

Administrivia
• Reading for Friday: Section 14.1

• HW 3 (multithreading) due Tuesday 10/1

• Exam 1 out Wednesday
• Multi-day takehome
• Open notes and book, closed internet and friends
• No class next Thursday (10/3)
• Due early the next week (probably Monday night)
• Everything thru multithreaded (induction, asymptotic ordering, AVL trees,

D&C, multithreaded)

Multithreading so far

A B

A

B

Allow different parts to run at the same time; program with spawn and sync

Metrics: Work T1 = Total amount to do

 Span T ∞ = Length of longest path of dependencies

void do_it(int s, int e) {
 if(s == e)
 loop body
 else {
 spawn do_it(s, (s+e)/2)
 do_it((s+e)/2+1, e)
 sync
 }
 }

What are T1 and T∞ for the following?

Transpose(A) {
 n = A.rows
 for j = 2 to n
 for i = 1 to j-1
 exchange aij with aji

}

A.⍬(n log n) and ⍬(n)
B.⍬(n log n) and ⍬(n log n)
C.⍬(n2) and ⍬(n log n)
D.⍬(n2) and ⍬(n2)
E. None of the above

What are T1 and T∞ for the following?

Transpose(A) {
 n = A.rows
 for j = 2 to n
 for i = 1 to j-1
 exchange aij with aji

}

A.⍬(n log n) and ⍬(n)
B.⍬(n log n) and ⍬(n log n)
C.⍬(n2) and ⍬(n log n)
D.⍬(n2) and ⍬(n2)
E. None of the above

What are T1 and T∞ for the following?

Transpose(A) {
 n = A.rows
 for j = 2 to n
 parallel for i = 1 to j-1
 exchange aij with aji

}

A.⍬(n log n) and ⍬(n)
B.⍬(n2) and ⍬(n)
C.⍬(n2) and ⍬(n log n)
D.⍬(n2) and ⍬(n2)
E. None of the above

What are T1 and T∞ for the following?

Transpose(A) {
 n = A.rows
 for j = 2 to n
 parallel for i = 1 to j-1
 exchange aij with aji

}

A.⍬(n log n) and ⍬(n)
B.⍬(n2) and ⍬(n)
C.⍬(n2) and ⍬(n log n)
D.⍬(n2) and ⍬(n2)
E. None of the above

What about this version?

Transpose(A) {
 n = A.rows
 parallel for j = 2 to n
 parallel for i = 1 to j-1
 exchange aij with aji

}

Practice problem: Summing an array
based on 26-4a

Give multithreaded code to sum the values in an array A using O(n)
work and having O(log n) span.

Practice problem: Matrix-vector multiplication

Another matrix operation is matrix-vector multiplication, in which a matrix M is
multiplied by an array x to produce another array y. Here is a serial implementation:

 for(int i=0; i < n; i++) {
 y[i] = 0;
 for(int j=0; j < n; j++)
 y[i] = y[i] + M[i][j] * x[j];
 }

a) Parallelize the iterations of the outer loop (controlled by i). The inner loop should
be unchanged. Analyze the work and span of your code.

Practice problem: Matrix-vector multiplication

Another matrix operation is matrix-vector multiplication, in which a matrix M is
multiplied by an array x to produce another array y. Here is a serial implementation:

 for(int i=0; i < n; i++) {
 y[i] = 0;
 for(int j=0; j < n; j++)
 y[i] = y[i] + M[i][j] * x[j];
 }

b) Parallelize the iterations of the inner loop (controlled by j). The outer loop should
be unchanged. Analyze the work and span of your code.

