Spooky reductions and hardness

10/31/24

Recall: Poly-time reductions

- What to compare the computational difficulty of problems
- Stick to decision problems: Answer is "yes" or "no"
- Poly-time reducibility:

 $A \leq_p B$ if x in A if and only if f(x) in B and f can be computed in polynomial time

- If B can be solved in polynomial time, then so can A
- If A cannot be solved in polynomial time, then neither can B

Recall: CIRCUIT-SAT

{<C> : C is a satisfiable boolean circuit }

Image: https://algorithms.cs.aalto.fi/Teaching/CS-A1120/2018/notes/round-combinational-logic.html

Satisfiability (SAT)

Boolean variables: x₁, x₂, x₃, ..., x_n
Term: Variable or its negation x_i, x̄_i
Clause: Terms combined with or x_i ∨ x̄_j ∨ x̄_k ∨ x_l
Expression: Clauses joined with and (x_i ∨ x̄_j ∨ x̄_k ∨ x_l) ∧ (x_a ∨ x̄_b)

Satisfiability (SAT)

 Boolean variables: 	x ₁ , x ₂ , x ₃ ,, x _n
 Term: Variable or its negation 	x_i , $\overline{x_i}$
 Clause: Terms combined with or 	$x_i \vee \overline{x_j} \vee \overline{x_k} \vee x_l$
 Expression: Clauses joined with and 	$(x_i \lor \overline{x_j} \lor \overline{x_k} \lor x_l) \land (x_a \lor \overline{x_b})$

Does an expression have a satisfying assignment? (i.e. can it be made true?)

Is the expression below satisfiable? $(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_1 \lor x_2) \land (\overline{x_1} \lor x_2 \lor x_3) \land \overline{x_2}$

A. Yes

B. No

Is the expression below satisfiable? $(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_1 \lor x_2) \land (\overline{x_1} \lor x_2 \lor x_3) \land \overline{x_2}$

- A. <u>Yes</u>
- B. No

Image: https://algorithms.cs.aalto.fi/Teaching/CS-A1120/2018/notes/round-combinational-logic.html

<u>3-</u>Satisfiability (<u>3</u>SAT)

Boolean variables: x₁, x₂, x₃, ..., x_n
Term: Variable or its negation x_i, x̄_i
Clause: Exactly 3 terms combined with or x_i ∨ x̄_j ∨ x̄_k
Expression: Clauses joined with and (x_i ∨ x̄_j ∨ x̄_k) ∧ (x_a ∨ x̄_b ∨ x_c)

Does an expression have a satisfying assignment? (i.e. can it be made true?)

How many of the expressions below are in the correct form for 3SAT?

I. $(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_1 \lor x_2) \land (\overline{x_1} \lor x_2 \lor x_3)$ II. $(x_1 \lor \overline{x_1} \lor \overline{x_3}) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_2} \lor x_3 \lor x_4)$ III. $(x_1 \land \overline{x_2} \land \overline{x_4}) \lor (\overline{x_1} \land x_3 \land x_4)$ IV. $(x_2 \lor \overline{x_3} \lor x_4) \land (x_1 \lor x_2 \lor \overline{x_3} \lor x_4)$

A. 0 B. 1 C. 2 D. 3 E. 4

How many of the expressions below are in the correct form for 3SAT?

I. $(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_1 \lor x_2) \land (\overline{x_1} \lor x_2 \lor x_3)$ II. $(x_1 \lor \overline{x_1} \lor \overline{x_3}) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_2} \lor x_3 \lor x_4)$ III. $(x_1 \land \overline{x_2} \land \overline{x_4}) \lor (\overline{x_1} \land x_3 \land x_4)$ IV. $(x_2 \lor \overline{x_3} \lor x_4) \land (x_1 \lor x_2 \lor \overline{x_3} \lor x_4)$

A. 0 <u>B. 1</u> C. 2 D. 3 E. 4 (just II.)

Transitivity

• We've now shown

CIRCUIT-SAT \leq_p SAT \leq_p 3SAT

Just as the notation suggests, this means CIRCUIT-SAT \leq_p 3SAT. In other words, poly-time reductions are transitive

CLIQUE

- A clique of size k in a graph is k vertices that are all mutually adjacent
- Given a graph G and integer k, does G have a clique of size k?

INDEPENDENT SET

- An independent set of size k in a graph is k vertices, none of which are adjacent
- Given a graph G and integer k, does G have an independent set of size k?

Hardness so far

• Polynomial-time reductions:

 $A \leq_p B$ if x in A if and only if f(x) in B and f can be computed in polynomial time

 $\mathsf{CIRCUIT}\mathsf{-}\mathsf{SAT} \leqslant_p \mathsf{SAT} \leqslant_p \mathsf{OLIQUE} \leqslant_p \mathsf{INDEPENDENT} \mathsf{SET}$