NP-completeness

11/1/24

Administrivia

- HW 6 (flow and greedy algorithms) due Wednesday night
- HW 7 due at end of term (a week from Tuesday)
 - Amortized analysis, NP-completeness
- Final out immediately after that
 - Due at end of finals (10pm, Sunday 11/17)
 - Comprehensive, but weighted toward last part of the course

Hardness so far

- Polynomial-time reductions:
 - $A \leq_p B$ if x in A if and only if f(x) in B and f can be computed in polynomial time

 $\mathsf{CIRCUIT}\mathsf{-}\mathsf{SAT} \leqslant_p \mathsf{SAT} \leqslant_p \mathsf{OSAT} \leqslant_p \mathsf{CLIQUE} \leqslant_p \mathsf{INDEPENDENT} \mathsf{SET}$

Complexity classes

- P: Problems that can be decided in polynomial time
- NP: Problems that can be verified in polynomial time

NP-completeness

- A is NP-complete if
 - A in NP
 - $L \leq_p A$ for every L in NP

NP-completeness

- A is NP-complete if
 - A in NP
 - $L \leq_p A$ for every L in NP
- NP-complete problems are the hardest problems in NP
 - If any NP-complete problem is in P, then so is every problem in NP and P = NP
 - If P != NP, then no NP-complete problem can be solved in polynomial time

Cook-Levin Th: CIRCUIT-SAT is NP-complete

Cook-Levin Th: CIRCUIT-SAT is NP-complete

Proof sketch:

- Verification routine can be written as program that runs in poly-time
- Computer updating its state for 1 time step is a circuit
- "Unrolling" this and taking the certificate as inputs gives a circuit that is satisfiable if and only if the original problem instance is a "yes" instance

Showing other problems are NP-complete

- Show they are in NP
- Pick "favorite" NP-complete problem and show how to solve it using the new problem

VERTEX COVER

- A vertex cover is a set of vertices such that every edge has at least one of its vertices in the set
- Given graph G and integer k, does G have a vertex cover of size k?

What is the size of the smallest vertex cover in the graph below?

What is the size of the smallest vertex cover in the graph below?

SET COVER

- Given a set U and a collection of other sets S₁, S₂, ..., S_n, are there k of the sets whose union is U?
- Example:
 - U = {1, 2, 3, 4, 5, 6}
 - $S_1 = \{1, 4, 5\}, S_2 = \{1, 2, 5, 6\}, S_3 = \{2, 4\}, S_4 = \{3, 6\}$
 - "no" for k=2, "yes" for k=3

HAMILTONIAN CYCLE (HAM CYCLE)

• Given a directed graph G, is there is a cycle visiting all the vertices?

HAMILTONIAN PATH (HAM PATH)

• Given a directed graph G, is there is a path visiting all the vertices?

