More NP-completeness

11/4/24

Administrivia

- HW 6 (flow and greedy algorithms) due Wednesday night
- HW 7 due at end of term (a week from tomorrow)
 - Amortized analysis, NP-completeness
- Final out immediately after that
 - Due at end of finals (10pm, Sunday 11/17)
 - Comprehensive, but weighted toward last part of the course

Hardness so far

- Poly-time reduction: $A \leq_p B$ if x in A if and only if f(x) in B and can compute f in polynomial time
- Complexity classes
 - P: Problems that can be decided in polynomial time
 - NP: Problems that can be verified in polynomial time
- NP complete: Any problem in NP reduces to them
 - Show they are in NP
 - Pick "favorite" NP-complete problem and show how to solve it using the new problem
- NP-complete problems so far:

CIRCUIT-SAT \leq_p SAT \leq_p 3SAT \leq_p CLIQUE \leq_p INDEPENDENT SET \leq_p VERTEX COVER \leq_p SET COVER $\stackrel{\sim}{\searrow}$ HAMILTONIAN CYCLE

Where we were: HAM PATH

• Given a directed graph G, is there is a path visiting all the vertices?

HAMILTONIAN PATH (HAM PATH)

• Given a directed graph G, is there is a path visiting all the vertices?

• LONGEST PATH: Given G and an integer k, does G have a path of length k?

https://www.youtube.com/watch?v=a3ww0gwEszo

• Given weighted complete graph and integer k, is there a cycle that visits all the vertices with total cost at most k?

- Given weighted complete graph and integer k, is there a cycle that visits all the vertices with total cost at most k?
- What NP-complete problem would you reduce from to show this is NP-complete?
- A. 3SAT
- B. CLIQUE
- C. INDEPENDENT SET
- D. HAMILTONIAN CYCLE
- E. HAMILTONIAN PATH

- Given weighted complete graph and integer k, is there a cycle that visits all the vertices with total cost at most k?
- What NP-complete problem would you reduce from to show this is NP-complete?
- A. 3SAT
- B. CLIQUE
- C. INDEPENDENT SET
- D. <u>HAMILTONIAN CYCLE</u>
- E. HAMILTONIAN PATH

• Given weighted complete graph and integer k, is there a cycle that visits all the vertices with total cost at most k?

https://xkcd.com/399/

Is there a subset of {6, 9, 12, 13, 14, 18, 21, 22, 34, 40} summing to 100?

- A. Yes
- B. No

Is there a subset of {6, 9, 12, 13, 14, 18, 21, 22, 34, 40} summing to 100?

- A. <u>Yes</u> 12+14+18+22+34=100
- B. No

- Simplifying assumptions:
 - No clause contains both a variable and its negation
 - Every variable appears in at least one clause

 $(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3)$

	x_1	<i>x</i> ₂	<i>x</i> ₃	clause 1	clause 2
slack for each clause choice for each variable	1	0	0	1	1
	1	0	0	0	0
	0	1	0	0	0
	0	1	0	1	1
	0	0	1	1	0
	0	0	1	0	1
	0	0	0	1	0
	0	0	0	2	0
	0	0	0	0	1
	0	0	0	0	2
Target:	1	1	1	4	4