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Recall: Kruskal’s MST algorithm

create a “tree” for each node
for each edge (u,v) in order of non-decreasing weight
 if u and v are in different components
  add (u,v) to the MST
  merge their components
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create a “tree” for each node
for each edge (u,v) in order of non-decreasing weight
 if u and v are in different components
  add (u,v) to the MST
  merge their components

How do we perform 
these operations?



Disjoint set operations

• Make-set(v): Create a set {v}

• Find(v): Return representative member of the set containing v
• Allows comparison to determine if two values are in the same set

• Union(u,v): Join the sets containing u and v



Basic uptree implementation

Make-set(v): v.p = v

Find(v):
 curr = v;
 while(curr.p != curr)
  curr = curr.p;
 return curr

Union(u,v):
 u_rep = Find(u)
 v_rep = Find(v)
 u_rep.p = v_rep

Data structure: Each node has a “parent” pointer p
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Union by rank

Make-set(v): v.p = v; v.rank = 0

Find(v):
 curr = v;
 while(curr.p != curr)
  curr = curr.p;
 return curr

Union(u,v):
 u_rep = Find(u)
 v_rep = Find(v)
 if(u_rep.rank < v_rep.rank)
  u_rep.p = v_rep
 else
  v_rep.p = u_rep
  if(u_rep.rank == v_rep.rank)
   u_rep.rank++

Data structure: Each node has a “parent” pointer p and an integer rank



What does union by rank get us?

Claim: With union by rank, an uptree containing n nodes has height O(log n)



Path compression

Make-set(v): v.p = v; v.rank = 0

Find(v):
 if(v != v.p)
  v.p = Find(v.p)
 return v.p

Union(u,v):
 u_rep = Find(u)
 v_rep = Find(v)
 if(u_rep.rank < v_rep.rank)
  u_rep.p = v_rep
 else
  v_rep.p = u_rep
  if(u_rep.rank == v_rep.rank)
   u_rep.rank++

Data structure: Each node has a “parent” pointer p and an integer rank



What does path compression (+ union by rank) get us?

• Define “tower” function:
• F(0) = 1
• F(i+1) = 2F(i)
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i times
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What does path compression (+ union by rank) get us?

• Define “tower” function:
• F(0) = 1
• F(i+1) = 2F(i)

• log* n = least i such that F(i) ≥ n
               = least i such that log log … log n ≤ 1

Claim: With union by rank and path compression, amortized time for 
find (and thus for make-set and union) is O(log* n)

i times


