
Union/find
10/28/24

Recall: Kruskal’s MST algorithm

create a “tree” for each node
for each edge (u,v) in order of non-decreasing weight
 if u and v are in different components
 add (u,v) to the MST
 merge their components

Recall: Kruskal’s MST algorithm

create a “tree” for each node
for each edge (u,v) in order of non-decreasing weight
 if u and v are in different components
 add (u,v) to the MST
 merge their components

How do we perform
these operations?

Disjoint set operations

• Make-set(v): Create a set {v}

• Find(v): Return representative member of the set containing v
• Allows comparison to determine if two values are in the same set

• Union(u,v): Join the sets containing u and v

Basic uptree implementation

Make-set(v): v.p = v

Find(v):
 curr = v;
 while(curr.p != curr)
 curr = curr.p;
 return curr

Union(u,v):
 u_rep = Find(u)
 v_rep = Find(v)
 u_rep.p = v_rep

Data structure: Each node has a “parent” pointer p

Basic uptree implementation

Make-set(v): v.p = v

Find(v):
 curr = v;
 while(curr.p != curr)
 curr = curr.p;
 return curr

Union(u,v):
 u_rep = Find(u)
 v_rep = Find(v)
 u_rep.p = v_rep

Data structure: Each node has a “parent” pointer p

What is the worst case running time for a Union or Find?
A. O(1)
B. O(log n)
C. O(n)
D. O(n log n)
E. None of the above

Basic uptree implementation

Make-set(v): v.p = v

Find(v):
 curr = v;
 while(curr.p != curr)
 curr = curr.p;
 return curr

Union(u,v):
 u_rep = Find(u)
 v_rep = Find(v)
 u_rep.p = v_rep

Data structure: Each node has a “parent” pointer p

What is the worst case running time for a Union or Find?
A. O(1)
B. O(log n)
C. O(n)
D. O(n log n)
E. None of the above

Union by rank

Make-set(v): v.p = v; v.rank = 0

Find(v):
 curr = v;
 while(curr.p != curr)
 curr = curr.p;
 return curr

Union(u,v):
 u_rep = Find(u)
 v_rep = Find(v)
 if(u_rep.rank < v_rep.rank)
 u_rep.p = v_rep
 else
 v_rep.p = u_rep
 if(u_rep.rank == v_rep.rank)
 u_rep.rank++

Data structure: Each node has a “parent” pointer p and an integer rank

What does union by rank get us?

Claim: With union by rank, an uptree containing n nodes has height O(log n)

Path compression

Make-set(v): v.p = v; v.rank = 0

Find(v):
 if(v != v.p)
 v.p = Find(v.p)
 return v.p

Union(u,v):
 u_rep = Find(u)
 v_rep = Find(v)
 if(u_rep.rank < v_rep.rank)
 u_rep.p = v_rep
 else
 v_rep.p = u_rep
 if(u_rep.rank == v_rep.rank)
 u_rep.rank++

Data structure: Each node has a “parent” pointer p and an integer rank

What does path compression (+ union by rank) get us?

• Define “tower” function:
• F(0) = 1
• F(i+1) = 2F(i)

What does path compression (+ union by rank) get us?

• Define “tower” function:
• F(0) = 1
• F(i+1) = 2F(i)

• log* n = least i such that F(i) ≥ n
 = least i such that log log … log n ≤ 1

i times

What does path compression (+ union by rank) get us?

• Define “tower” function:
• F(0) = 1
• F(i+1) = 2F(i)

• log* n = least i such that F(i) ≥ n
 = least i such that log log … log n ≤ 1

i times

What is log* 1,000,000?
A. 5 B. 10 C. 15 D. 20 E. None of these

What does path compression (+ union by rank) get us?

• Define “tower” function:
• F(0) = 1
• F(i+1) = 2F(i)

• log* n = least i such that F(i) ≥ n
 = least i such that log log … log n ≤ 1

i times

What is log* 1,000,000?
A. 5 B. 10 C. 15 D. 20 E. None of these

What does path compression (+ union by rank) get us?

• Define “tower” function:
• F(0) = 1
• F(i+1) = 2F(i)

• log* n = least i such that F(i) ≥ n
 = least i such that log log … log n ≤ 1

Claim: With union by rank and path compression, amortized time for
find (and thus for make-set and union) is O(log* n)

i times

