Union/find

10/28/24

Recall: Kruskal's MST algorithm

create a "tree" for each node for each edge (u,v) in order of non-decreasing weight if u and v are in different components add (u,v) to the MST merge their components

Recall: Kruskal's MST algorithm

create a "tree" for each node

for each edge (u,v) in order of non-decreasing weight

if <u>u and v are in different components</u>

add (u,v) to the MST

merge their components

How do we perform these operations?

Disjoint set operations

- Make-set(v): Create a set {v}
- Find(v): Return representative member of the set containing v
 - Allows comparison to determine if two values are in the same set
- Union(u,v): Join the sets containing u and v

Basic uptree implementation

Data structure: Each node has a "parent" pointer p

return curr

Basic uptree implementation

Data structure: Each node has a "parent" pointer p

Make-set(v): v.p = vUnion(u,v): $u_rep = Find(u)$ Find(v): $v_rep = Find(v)$ curr = v; u rep.p = v rep while(curr.p != curr) curr = curr.p; What is the worst case running time for a Union or Find? return curr A. O(1) B. O(log n) C. O(n) D. $O(n \log n)$ E. None of the above

Basic uptree implementation

Data structure: Each node has a "parent" pointer p

 $\begin{aligned} \text{Make-set}(v): v.p = v & \text{Union}(u,v): \\ & u_rep = \text{Find}(u) \\ \text{V_rep} = \text{Find}(v) \\ \text{curr} = v; & u_rep.p = v_rep \\ & \text{while}(\text{curr.p} != \text{curr}) \\ & \text{curr} = \text{curr.p}; \\ & \text{return curr} \end{aligned}$ $\begin{aligned} & \text{What is the worst case running time for a Union or Find?} \\ \text{A. O(1)} \\ \text{B. O(log n)} \\ \text{C. O(n)} \\ \text{D. O(n log n)} \end{aligned}$

E. None of the above

Union by rank

Data structure: Each node has a "parent" pointer p and an integer rank

Make-set(v): v.p = v; v.rank = 0

Find(v):

Union(u,v): u_rep = Find(u) v_rep = Find(v) if(u_rep.rank < v_rep.rank) u_rep.p = v_rep else v_rep.p = u_rep if(u_rep.rank == v_rep.rank) u_rep.rank++

What does union by rank get us?

Claim: With union by rank, an uptree containing n nodes has height O(log n)

Path compression

Data structure: Each node has a "parent" pointer p and an integer rank

Make-set(v): v.p = v; v.rank = 0

Find(v):

 $\frac{if(v != v.p)}{v.p = Find(v.p)}$ return v.p

Union(u,v): u_rep = Find(u)

v_rep = Find(v)

if(u_rep.rank < v_rep.rank)</pre>

u_rep.p = v_rep

else

v_rep.p = u_rep if(u_rep.rank == v_rep.rank) u_rep.rank++

- Define "tower" function:
 - F(0) = 1
 - $F(i+1) = 2^{F(i)}$

- Define "tower" function:
 - F(0) = 1
 - $F(i+1) = 2^{F(i)}$

•
$$\log^* n = \text{least i such that } F(i) \ge n$$

= least i such that $\log \log \dots \log n \le 1$

- Define "tower" function:
 - F(0) = 1
 - $F(i+1) = 2^{F(i)}$
- $\log^* n = \text{least i such that } F(i) \ge n$

= least i such that
$$\log \log \ldots \log n \le 1$$

What is log* 1,000,000? A. 5 B. 10 C. 15 D. 20 E. None of these

- Define "tower" function:
 - F(0) = 1
 - $F(i+1) = 2^{F(i)}$
- $\log^* n = \text{least i such that } F(i) \ge n$

= least i such that
$$\log \log \ldots \log n \le 1$$

What is log* 1,000,000? A. <u>5</u> B. 10 C. 15 D. 20 E. None of these

- Define "tower" function:
 - F(0) = 1
 - $F(i+1) = 2^{F(i)}$

•
$$\log^* n = \text{least i such that } F(i) \ge n$$

= $\text{least i such that } \log \log \dots \log n \le 1$

Claim: With union by rank and path compression, amortized time for find (and thus for make-set and union) is O(log* n)