
ASM function practice and binary

1/15/25

Administrivia

• HW 1 (V in assembly) due tonight

Recall: Recursion using the stack

Stack composed of "activation records" or "stack frames", each with the local variables and saved registers for one function call

Bottom of the stack is stored in \$sp (stack pointer)

To reserve another frame: \$sp = \$sp - (frame size)

To free the frame: \$sp = \$sp + (frame size)

Computing the Fibonacci numbers

int fib(int n) {
 if(n < 2)
 return n;</pre>

```
int val1 = fib(n-1);
int val2 = fib(n-2);
return val1 + val2;
```

}

Decimal numbers (base 10)

10000s digit	_	_	10s digit	1s digit	
3	4	8	1	6	= 34,816 ₁₀

• The ith digit from the right (starting with 0) is worth 10ⁱ

Binary numbers (base 2)

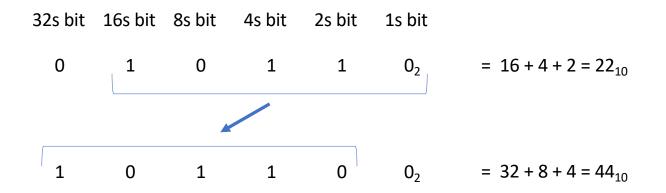
16s bit	8s bit	4s bit	2s bit	1s bit	
1	0	1	1	02	= 16 + 4 + 2 = 22

- The ith bit from the right (starting with 0) is worth 2ⁱ
- Converting from binary: Determine value of each bit and add the results

What is the value of the binary number 1001110?

- A. 42
- B. 78
- C. 108
- D. 214
- E. None of the above

What is the value of the binary number 1001110?


- A. 42
- B. <u>78</u>
- C. 108
- D. 214
- E. None of the above

Converting to binary

- Repeatedly divide by 2
 - Remainder at each step gives next least significant bit

• 214 / 2 = 107	remainder 0	<u>0</u>
• 107 / 2 = 53	remainder 1	<u>1</u> 0
• 53 / 2 = 26	remainder 1	<u>1</u> 10
• 26 / 2 = 13	remainder 0	<u>0</u> 110
• 13 /2 = 6	remainder 1	<u>1</u> 0110
• 6 / 2 = 3	remainder 0	<u>0</u> 10110
• 3 / 2 = 1	remainder 1	<u>1</u> 010110
• 1/2=0	remainder 1	<u>1</u> 1010110

Shifting operations

- Shifting left multiplies by 2
 - Each 1 contributes twice as much as before
- Shifting right divides by 2

Hovadocimal (baco 16)	0	0	0000
Hexadecimal (base 16)	1	1	0001
	2	2	0010
 Use a-f to represent 10-15 	3	3	0011
·	4	4	0100
 1ab4₁₆ = 0x1ab4 Each digit represents 4 bits 	5	5	0101
	6	6	0110
	7	7	0111
	8	8	1000
	9	9	1001
	а	10	1010
	b	11	1011
	С	12	1100
	d	13	1101
	е	14	1110

1111

15

f