
Associative caching

2/3/25

Administrivia

• HW 5 (linked lists in C) due Thursday night

• Midterm out Friday morning
– Multi-day takehome due sometime next week
– No class on Monday (2/10)
– Covers everything up to (and including) caching

Recall: Idea of caching

• Have small, fast memory near the
processor and bigger, slower
memory far way

• Locality:
– temporal: Likely to reuse memory

addresses soon
– spatial: Likely to use memory

addresses near those we use now

Processor

L1 cache

L2 cache

L3 cache

RAM

tag line number offset

where addr falls
in cache line

line in which this
address can be stored

Associative caches

• Fully-associative caches: Any data block can use
any line

Associative caches

• Fully-associative caches: Any data block can use
any line

What is the advantage of this?

How many bits would the tag occupy in a
system with a 32-bit address space where
the fully-associative cache stores 1024=210

lines, each holding 4 bytes?
A. 18
B. 20
C. 26
D. 30
E. None of the above or cannot be determined

How many bits would the tag occupy in a
system with a 32-bit address space where
the fully-associative cache stores 1024=210

lines, each holding 4 bytes?
A. 18
B. 20
C. 26
D. 30
E. None of the above or cannot be determined

Associative caches

• Fully-associative caches: Any data block can use
any line
– Replacement strategies: FIFO, LRU

Associative caches

• Fully-associative caches: Any data block can use
any line
– Replacement strategies: FIFO, LRU
– Approximate LRU with just a couple of bits

Associative caches

• Fully-associative caches: Any data block can use
any line
– Replacement strategies: FIFO, LRU
– Approximate LRU with just a couple of bits

• K-way set associative: Lines organized into sets,
each data block can use any line in its set

How many bits would the tag occupy in a
system with a 32-bit address space where

the 4-way set associative cache stores
1024=210 lines, each holding 4 bytes?

A. 18
B. 20
C. 22
D. 24
E. None of the above or cannot be determined

How many bits would the tag occupy in a
system with a 32-bit address space where

the 4-way set associative cache stores
1024=210 lines, each holding 4 bytes?

A. 18
B. 20
C. 22
D. 24
E. None of the above or cannot be determined

How many bits does the tag use in a
system with a 32-bit address space where

the 8-way set associative cache stores
2048=211 lines, each holding 16=24 bytes?

A. 14
B. 17
C. 20
D. 24
E. None of the above or cannot be determined

How many bits does the tag use in a
system with a 32-bit address space where

the 8-way set associative cache stores
2048=211 lines, each holding 16=24 bytes?

A. 14
B. 17
C. 20 (= 32 - (11 - 3) - 4)
D. 24
E. None of the above or cannot be determined

What happens on a read to address
0011100?

(Cache is 2-way set associative, LRU, 2-byte lines)
valid tag data

0 T 0011 ???

1 F 0010 ???

2 T 1110 ???

3 T 1000 ???

4 T 1011 ???

5 F 0011 ???

6 T 1011 ???

7 F 0010 ???A. Hit
B. Miss – loads line 3
C. Miss – loads line 4
D. Miss – loads line 5
E. None of the above or can’t be determined

{
{

{
{

Set of 2 slots

What happens on a read to address
0011100?

(Cache is 2-way set associative, LRU, 2-byte lines)
valid tag data

0 T 0011 ???

1 F 0010 ???

2 T 1110 ???

3 T 1000 ???

4 T 1011 ???

5 F 0011 ???

6 T 1011 ???

7 F 0010 ???A. Hit
B. Miss – loads line 3
C. Miss – loads line 4
D. Miss – loads line 5
E. None of the above or can’t be determined

{
{

{
{

Set of 2 slots

What happens on a read to address
0011011?

(Cache is 2-way set associative, LRU, 2-byte lines)
valid tag data

0 T 0011 ???

1 F 0010 ???

2 T 1110 ???

3 T 1000 ???

4 T 1011 ???

5 F 0011 ???

6 T 1011 ???

7 F 0010 ???A. Hit
B. Miss – loads line 3
C. Miss – loads line 4
D. Miss – loads line 5
E. None of the above or can’t be determined

{
{

{
{

Set of 2 lines

What happens on a read to address
0011011?

(Cache is 2-way set associative, LRU, 2-byte lines)
valid tag data

0 T 0011 ???

1 F 0010 ???

2 T 1110 ???

3 T 1000 ???

4 T 1011 ???

5 F 0011 ???

6 T 1011 ???

7 F 0010 ???A. Hit
B. Miss – loads line 3
C. Miss – loads line 4
D. Miss – loads line 5
E. None of the above or can’t be determined (miss – loads 2 or 3)

{
{

{
{

Set of 2 lines

What about writes?

• Write-thru cache: Always send
writes all the way down the memory
hierarchy

• Write-back cache: Don’t propagate
changes down the hierarchy until
data block is evicted
– Add “dirty bit” to each line

Processor

L1 cache

L2 cache

L3 cache

RAM

Recall: Example of caching effects

int[][] array = new int[size][size];
for(int i=0; i < size; i++)
 for(int j=0; j < size; j++)
 /* DO SOMETHING */

Version 1: array[i][j] *= 2;
Version 2: array[j][i] *= 2;

Relevant detail: Java stores a 2D array as an array of array references

Recall: Example of caching effects

int[][] array = new int[size][size];
for(int i=0; i < size; i++)
 for(int j=0; j < size; j++)
 /* DO SOMETHING */

Version 1: array[i][j] *= 2;
Version 2: array[j][i] *= 2;

Relevant detail: Java stores a 2D array as an array of array references

Which version should have
better cache performance?
A) Version 1
B) Version 2

Recall: Example of caching effects

int[][] array = new int[size][size];
for(int i=0; i < size; i++)
 for(int j=0; j < size; j++)
 /* DO SOMETHING */

Version 1: array[i][j] *= 2;
Version 2: array[j][i] *= 2;

Relevant detail: Java stores a 2D array as an array of array references

Which version should have
better cache performance?
A) Version 1
B) Version 2

T
im

e
(s

)

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 100 200 300 400 500 600 700 800 900 1000
Size

 0.05
Version 1

Version 2

 0

