Associative caching

Administrivia

e HW 5 (linked lists in C) due Thursday night

* Midterm out Friday morning

— Multi-day takehome due sometime next week
— No class on Monday (2/10)
— Covers everything up to (and including) caching

Recall: Idea of caching

 Have small, fast memory near the
processor and bigger, slower
memory far way

* Locality:
— temporal: Likely to reuse memory
addresses soon

— spatial: Likely to use memory
addresses near those we use now

tag line number o{fset

A

Associative caches

* Fully-associative caches: Any data block can use
any line

Associative caches

* Fully-associative caches: Any data block can use
any line

What is the advantage of this?

How many bits would the tag occupy in a

system with a 32-bit address space where

t

mo o ® >

he fully-associative cache stores 1024=21°
lines, each holding 4 bytes?
. 18
20
26
. 30

None of the above or cannot be determined

How many bits would the tag occupy in a

system with a 32-bit address space where

t

mo o ® P

he fully-associative cache stores 1024=21°
lines, each holding 4 bytes?
. 18
20
26
. 30

None of the above or cannot be determined

Associative caches

* Fully-associative caches: Any data block can use
any line
— Replacement strategies: FIFO, LRU

Associative caches

* Fully-associative caches: Any data block can use
any line
— Replacement strategies: FIFO, LRU
— Approximate LRU with just a couple of bits

Associative caches

* Fully-associative caches: Any data block can use
any line
— Replacement strategies: FIFO, LRU
— Approximate LRU with just a couple of bits

* K-way set associative: Lines organized into sets,
each data block can use any line in its set

How many bits would the tag occupy in a

system with a 32-bit address space where

mo o ® >

the 4-way set associative cache stores
1024=2"9 lines, each holding 4 bytes?

. 18
20
22
. 24
None of the above or cannot be determined

How many bits would the tag occupy in a

system with a 32-bit address space where

m oo ® P

the 4-way set associative cache stores
1024=2"9 lines, each holding 4 bytes?

. 18
20
22
. 24
None of the above or cannot be determined

How many bits does the tag use in a

system with a 32-bit address space where

the 8-way set associative cache stores

2048=21! lines, each holding 16=2% bytes?

mo o ® >

. 14

17
20

. 24

None of the above or cannot be determined

How many bits does the tag use in a

system with a 32-bit address space where

the 8-way set associative cache stores

2048=21! lines, each holding 16=2% bytes?

. 14

17
20(=32-(11-3)-4)

m oo ® P

. 24

None of the above or cannot be determined

What happens on a read to address
00111007
(Cache is 2-way set associative, LRU, 2-byte lines)

valid tag data

Set of 2 slots { 0 T 0011 ?7?

1 F 0010 277

{ 2 T 1110 227

3 T 1000 227

4 T 1011 227

{ > F 0011 277

{ 6 T 1011 227

A. Hit 7 F 0010 277

B. Miss — loads line 3
C. Miss —loads line 4
D. Miss — loads line 5
E. None of the above or can’t be determined

What happens on a read to address
00111007
(Cache is 2-way set associative, LRU, 2-byte lines)

valid tag data

Set of 2 slots { 0 T 0011 ?7?

1 F 0010 277

{ 2 T 1110 227

3 T 1000 227

4 T 1011 227

{ > F 0011 277

{ 6 T 1011 227

A. Hit 7 F 0010 277

B. Miss — loads line 3
C. Miss —loads line 4
D. Miss —loads line 5
E. None of the above or can’t be determined

What happens on a read to address
00110117
(Cache is 2-way set associative, LRU, 2-byte lines)

valid tag data

Set of 2 lines { 0 T 0011 ??7?

1 F 0010 277

{ 2 T 1110 227

3 T 1000 227

4 T 1011 227

{ > F 0011 277

{ 6 T 1011 227

A. Hit 7 F 0010 277

B. Miss — loads line 3
C. Miss —loads line 4
D. Miss — loads line 5
E. None of the above or can’t be determined

What happens on a read to address
00110117
(Cache is 2-way set associative, LRU, 2-byte lines)

valid tag data

Set of 2 lines { 0 T 0011 ??7?

1 F 0010 277

{ 2 T 1110 227

3 T 1000 227

4 T 1011 227

{ > F 0011 277

{ 6 T 1011 227

A. Hit 7 F 0010 277

B. Miss —loads line 3
C. Miss —loads line 4
D. Miss — loads line 5
E. None of the above or can’t be determined (miss — loads 2 or 3)

What about writes?

* Write-thru cache: Always send
writes all the way down the memory
hierarchy

* Write-back cache: Don’t propagate
changes down the hierarchy until
data block is evicted

— Add “dirty bit” to each line

Processor

L1 cache

L2 cache

L3 cache

paay!

RAM

Recall: Example of caching effects

int[][] array = new int[size][size];
for(int i=0; i < size; i++)
for(int j=0; j < size; j++)
/* DO SOMETHING */

Version 1: arrayli][j] *= 2;

Version 2: arrayl[j][i] *= 2;

Relevant detail: Java stores a 2D array as an array of array references

Recall: Example of caching effects

int[][] array = new int[size][size];
for(int i=0; i < size; i++)
for(int j=0; j < size; j++)
/* DO SOMETHING */ .

/Which version should have

: better cache performance?
Version 1: arrayli][j] *=2; [A) Version1

Version 2: array|j][i] *= 2; _

Relevant detail: Java stores a 2D array as an array of array references

Recall: Example of caching effects

int[][] array = new int[size][size];
for(int i=0; i < size; i++)
for(int j=0; j < size; j++)
/* DO SOMETHING */ .

/Which version should have
better cache performance?

Version 1: arrayli][j] *= 2;
Version 2: array|j][i] *= 2; _

Relevant detail: Java stores a 2D array as an array of array references

0.45 I I I I I I I I
XK
04 X
0.35 Version2><><><>< |
00 %
03 5X _
© X
o 0.25 NE —
& X
= _|
Version 1
-
T T

O 1
100 200 300 400 500 600 700 800 900 1000
Size

