Twists on caching



Administrivia

e HW 5 (linked lists in C) due tomorrow night

 Midterm out Friday morning

— Multi-day takehome due sometime next week
— No class on Monday (2/10)
— Covers everything up to (and including) caching



Recall: Idea of caching

* Have small, fast memory near the
processor and bigger, slower
memory far way

* Locality:

— temporal: Likely to reuse memory
addresses soon

— spatial: Likely to use memory
addresses near those we use now

tag line number o{fset

-
oo
=
=
o



Caching: So cool it’s not just for the
processor

 Web browser caches pages that you’ve viewed

* Name servers cache translations they’ve
recently done between names and IP addresses
(e.g. cs.knox.edu becomes 72.26.72.37)



Multiprocessor caching



Multiprocessor caching

* How do you arrange caching for multiple
processors/cores in the same address space?

-
*H

!

S

i




Cache coherence

e Caches should present
. . Processor Processor
unified view of memory u u
requestl$ i

Private Private
* Potentially an issue when a \ esired
block

data block is in one cache I
and other PE requests it




Cache coherence

e Caches should present
. . Processor Processor
unified view of memory u u
requestl$ $

Private Private
* Potentially an issue when a \ esired
block

data block is in one cache I
and other PE requests it

e Left cache must “steal” the requested
block from the right cache



Worst case

e Data block keeps
getting stolen back and N
request

forth between the o Private
private caches u w




Worst case

e Data block keeps
rocessor Processor
getting stolen back and u % t
reques

forth between the E— —
private caches Mx F
RAM

* Even worse: There isn’t
any data being shared
(called false sharing)




Example

« Take an image, split into regions, and count
black pixels in each region

]

(actually every 16t cell)

« With 16 threads, version on right took about
half the time



Are you awake?

A. Yes
B. Yes, but | didn’t come to class today
C. Now |l am

D. Somewhat

E. No



Virtual memory



Awkward facts

* Modern processors use 64-bit addresses
= can access 2°* addresses



Awkward facts

* Modern processors use 64-bit addresses
= can access 2°* addresses
210 =1024 ~ 1000
264 = 242106 ~ 16(1000)°
~ 16 -1,000,000,000,000,000,000
aka 16 exabytes



Awkward facts

* Modern processors use 64-bit addresses
= can access 2°* addresses
210 =1024 ~ 1000
264 = 242106 ~ 16(1000)°
~ 16 -1,000,000,000,000,000,000
aka 16 exabytes

* Every program gets its own address space



Virtual memory

* Programs use virtual addresses that map to
physical addresses

* Give each program its own address space
— Simplifies programming:
* Programs don’t have to manage memory
— Simplifies multitasking
* Programs use any addresses they want

— Isolates programs from each other and the OS



Version 1: Segmentation

* Memory divided by logical function (OS, program
code, library, data, heap, ...) into segments

Segment #

offset

Virtual address

Translation by table (1 per program)

Table also holds metadata:
- Permission bits
- Segment length

Physical address




Version 1: Segmentation

* Memory divided by logical function (OS, program
code, library, data, heap, ...) into segments

Segment #

offset

Virtual address

Translation by table (1 per program)

Table also holds metadata:
- Permission bits
- Segment length

Physical address

What if segment length exceeds maximum possible?



External fragmentation

* Occurs when there is enough free space for a
desired segment, but it’s not all together

Memory:

Desired segment:




Internal fragmentation

* Occurs when space inside the segments is
wasted




Version 2: Paging

* Memory organized into small (4-16KB), fixed-
size “pages” which are allocated as needed

* Translation by “page table”

e Accessing unmapped memory is “page fault”



Real systems use a combination

* Memory organized into small pages, each
containing one type of data

* Terminology from both: “segmentation fault”,

7 U

“page fault”, “page table”



