
(I love) Concurrency

2/14/24

Recall: Threads and
parallelism/concurrency

• Parallelism: Using more resources to complete
job faster

• Concurrency: Managing access to shared
resources

Speedup =
Serial (non-parallel) running time

Parallel running time

Recall: Why not linear speedup? (1)
If B = fraction of program that must run serially
 T1 = total time on 1 processing element
What is best possible time on p elements?
A. T1/p + B
B. T1B/p
C. T1(1-B)/p + B
D. T1(1-B)/p + T1B (called Amdahl’s Law)
E. None of the above

Why not linear speedup? (2)
• Poor load balance:

Why not linear speedup? (3)
• Overhead
– Extra instructions needed for running in parallel
– Examples:
• creating and destroying threads
• calls needed to coordinate threads or communicate

between them
• changes to algorithm needed to expose parallelism or

improve load balance

Multicore programming

• So far, focused on speedup and why linear
speedup might not be achieved

• Today, looking at concurrency problems
–What kind of coordination might be needed and

how can it be done?

Setting of concurrency problems

• Each thread/process runs serially

• Relative to each other, they can run at
arbitrary speed, allowing very general
interactions

Race conditions

• Logic errors caused by interactions through
shared variables

• Example: processing ATM withdrawal

Operation Balance

Read current value (100) $100

Perform calculation (80) $100

Store new value $80

Race conditions

• Logic errors caused by interactions through
shared variables

• Example: processing ATM withdrawal

Operation 1 Operation 2 Balance

Read current value (100) $100

Perform calculation (80) Read current value (100) $100

Store new value Perform calculation (80) $80

Store new value $80

Solving race conditions

• One solution: locks
– acquire: block if lock is held, mark lock as held
– release: mark lock as not held, unblock one
 waiting thread (if any)

Solving race conditions

• One solution: locks
– acquire: block if lock is held, mark lock as held
– release: mark lock as not held, unblock one
 waiting thread (if any)

• Usage:
acquire lock
do critical section
release lock

Construction blocks one lane of a two-lane highway
so that all traffic must use the other lane.

What parallelism/concurrency concept does this
illustrate?

A. Threads
B. Race condition
C. Critical section
D. Parallel overhead
E. I hate construction

Construction blocks one lane of a two-lane highway
so that all traffic must use the other lane.

What parallelism/concurrency concept does this
illustrate?

A. Threads
B. Race condition
C. Critical section
D. Parallel overhead
E. I hate construction

Producer-consumer problem

• Producer writes into buffer while not full
• Consumer reads from buffer while not empty
• Each blocks if it can’t work
• Example: I/O buffers

Consumer

Bounded buffer

Producer

What is wrong with the given code?

What is wrong with the given code?

void producer() {
 ...
 if(count == N) sleep();

Similar issue in consumer as well

If the other thread removes an item
between the check and going to sleep,

the producer sleeps forever

Deadlock

• Situation in which group of threads/processes
all block forever

• Typically, each holds a resource that others are
blocking on

Yes. My traffic example did happen

Posted by "netchicken" at http://xmb.stuffucanuse.com/xmb/viewthread.php?tid=4848,
where it is attributed to an article on Reddit.

http://xmb.stuffucanuse.com/xmb/viewthread.php?tid=4848

More than once

http://minutillo.com/steve/weblog/2003/1/21/deadlock/, where it is
attributed to "Chuck @ China" (http://chake.chinatefl.com/)

http://minutillo.com/steve/weblog/2003/1/21/deadlock/
http://chake.chinatefl.com/

Does it work to move the troublesome
line into the critical section?

acquire_lock(); //moved from below next line
 if(count == N) sleep();
 insert_item(item);
 ...

A. Yes. The code works correctly with just changing the
producer code

B. Yes. The code works correctly if this change is made to
both the producer and consumer

C. No. This doesn’t prevent an interruption between reading
count and calling sleep

D. No. This creates a different deadlock
E. No. Something else breaks

Does it work to move the troublesome
line into the critical section?

acquire_lock(); //moved from below next line
 if(count == N) sleep();
 insert_item(item);
 ...

A. Yes. The code works correctly with just changing the
producer code

B. Yes. The code works correctly if this change is made to
both the producer and consumer

C. No. This doesn’t prevent an interruption between reading
count and calling sleep

D. No. This creates a different deadlock
E. No. Something else breaks

What if we make the producer give up
the lock right before going to sleep?
acquire_lock();

 if(count == N) { release_lock(); sleep(); acquire_lock(); }
 insert_item(item);
 ...

A. Yes. The code works correctly with just changing the
producer code

B. Yes. The code works correctly if this change is made to
both the producer and consumer

C. No. This doesn’t prevent an interruption between reading
count and calling sleep

D. No. This creates a different deadlock
E. No. Something else breaks

What if we make the producer give up
the lock right before going to sleep?
acquire_lock();

 if(count == N) { release_lock(); sleep(); acquire_lock(); }
 insert_item(item);
 ...

A. Yes. The code works correctly with just changing the
producer code

B. Yes. The code works correctly if this change is made to
both the producer and consumer

C. No. This doesn’t prevent an interruption between reading
count and calling sleep

D. No. This creates a different deadlock
E. No. Something else breaks

Semaphore
(Dijkstra 1965)

• Integer with two atomic operations:
– down: if 0, sleep until positive
 when positive, decrease by 1
– up: increase by one
 (if processes were sleeping, wake one up)

• Can be used as a lock, but more powerful.
Typically for more complicated inter-process
communication (IPC)

Semaphore-based solution to
producer-consumer

2 semaphores:
 empty: initial value n full: initial value 0

producer:
 down(empty);
 insert_item(); (w/ lock to protect data structure)
 up(full);

consumer:
 down(full);
 remove_item();
 up(empty);

Using a semaphore as a lock
binary semaphore: called a mutex
 can implement a lock if initial value is 1

producer:
 down(empty);
 down(mutex);
 insert_item();
 up(mutex);
 up(full);

consumer:
 down(full);
 down(mutex);
 remove_item();
 up(mutex);
 up(empty);

Using a semaphore as a lock
binary semaphore: called a mutex
 can implement a lock if initial value is 1

producer:
 down(empty);
 down(mutex);
 insert_item();
 up(mutex);
 up(full);

consumer:
 down(full);
 down(mutex);
 remove_item();
 up(mutex);
 up(empty);

Does the order of the calls to down matter?
(Just here, not in both methods.)
A. Yes. Swapping them creates a race

condition
B. Yes. Swapping them allows deadlock
C. Yes. Swapping them creates a different

problem
D. No. Swapping them works fine
E. You can’t tell without more information

}

Using a semaphore as a lock
binary semaphore: called a mutex
 can implement a lock if initial value is 1

producer:
 down(empty);
 down(mutex);
 insert_item();
 up(mutex);
 up(full);

consumer:
 down(full);
 down(mutex);
 remove_item();
 up(mutex);
 up(empty);

Does the order of the calls to down matter?
(Just here, not in both methods.)
A. Yes. Swapping them creates a race

condition
B. Yes. Swapping them allows deadlock
C. Yes. Swapping them creates a different

problem
D. No. Swapping them works fine
E. You can’t tell without more information

}

