More concurrency and deadlock



Administrivia

* HW 6 (finishing cache simulator) due Friday
night



Concurrency so far

* Race conditions vs deadlock
* Producer-consumer problem

* Locks and semaphores



High-level primitive: Monitors

* Group of functions such that only one can run
at a time

* Example: Java’s synchronized methods

— acquires lock on object before entering method



Another concurrency problem:
Readers and writers

* Processes share a common database

* Some want read access (readers) while others
want ability to write (writers)

 Readers should be able to share the database,
but all other processes must block if a writer

gets access



Solving readers and writers

semaphore mutex = 1; //control access to database

void read() { void write() {
down(mutex); down(mutex);
//perform read //perform write
up(mutex); up(mutex);

i }

Does this successfully implement readers and writers?
A. Yes.

B. No. It allows deadlock
C. No. It creates some other problem
D. What are up and down again?



Solving readers and writers

semaphore mutex = 1; //control access to database

void read() { void write() {
down(mutex); down(mutex);
//perform read //perform write
up(mutex); up(mutex);

) }

Does this successfully implement readers and writers?
A. Yes.

No. It allows deadlock

B
C. No. It creates some other problem (doesn’t allow more than 1 reader)
D. What are up and down again?




Solving readers and writers

semaphore mutex =1; //control access to database

int n umR = 0; //number of active readers
void read() { void write() {
NUMR++; down(mutex);
if(numR == 1) down(mutex); //perform write
up(mutex);
//perform read }
numR--;

if(numR == 0) up(mutex);

Does this successfully implement readers and writers?
A. Yes

| sure hope so

No. It allows deadlock

No. It creates some other problem

Mmoo w

| can’t think this hard anymore



Solving readers and writers

semaphore mutex =1; //control access to database

int n umR = 0; //number of active readers
void read() { void write() {
NUMR++; down(mutex);
if(numR == 1) down(mutex); //perform write
up(mutex);
//perform read }
numR--;

if(numR == 0) up(mutex);

Does this successfully implement readers and writers?
A. Yes

| sure hope so

No. It allows deadlock

No. It creates some other problem

mo O

| can’t think this hard anymore



Solving readers and writers

semaphore mutex = 1, num_mutex =1; //mutex protects database, num_mutex protects numR

int n umR = 0; //number of active readers
void read() { void write() {
down(num_mutex); down(mutex).;
numR++; //p(erf(irm)wrlte
up(mutex);
if(numR == 1) down(mutex); } P

up(num_mutex);

//perform read

down(num_mutex);

Does this successfully implement readers and writers?
Yes

| sure hope so

No. It allows deadlock

No. It creates some other problem

| can’t think this hard anymore

numR--;
if(numR == 0) up(mutex);
up(num_mutex);

mooO P



Solving readers and writers

semaphore mutex = 1, num_mutex =1; //mutex protects database, num_mutex protects numR

int n umR = 0; //number of active readers
void read() { void write() {
down(num_mutex); down(mutex)-;
numR++; //p(erf(?crm)wrlte
up(mutex);
if(numR == 1) down(mutex); } P

up(num_mutex);

//perform read

down(num_mutex);

Does this successfully implement readers and writers?
Yes

| sure hope so

No. It allows deadlock

No. It creates some other problem

| can’t think this hard anymore

numR--;
if(numR == 0) up(mutex);
up(num_mutex);

mooOwzre

(but does privilege readers since they never have to give up the database)



