
More concurrency and deadlock

2/17/25

Administrivia

• HW 6 (finishing cache simulator) due Friday
night

Concurrency so far

• Race conditions vs deadlock

• Producer-consumer problem

• Locks and semaphores

High-level primitive: Monitors

• Group of functions such that only one can run
at a time

• Example: Java’s synchronized methods
– acquires lock on object before entering method

Another concurrency problem:
Readers and writers

• Processes share a common database
• Some want read access (readers) while others

want ability to write (writers)
• Readers should be able to share the database,

but all other processes must block if a writer
gets access

Solving readers and writers
semaphore mutex = 1; //control access to database

void read() {
 down(mutex);
 //perform read
 up(mutex);
}

Does this successfully implement readers and writers?
A. Yes.
B. No. It allows deadlock
C. No. It creates some other problem (doesn’t allow more than 1 reader)
D. What are up and down again?

void write() {
 down(mutex);
 //perform write
 up(mutex);
}

Solving readers and writers
semaphore mutex = 1; //control access to database

void read() {
 down(mutex);
 //perform read
 up(mutex);
}

Does this successfully implement readers and writers?
A. Yes.
B. No. It allows deadlock
C. No. It creates some other problem (doesn’t allow more than 1 reader)
D. What are up and down again?

void write() {
 down(mutex);
 //perform write
 up(mutex);
}

Solving readers and writers
semaphore mutex = 1; //control access to database
int numR = 0; //number of active readers

void read() {
 numR++;
 if(numR == 1) down(mutex);
 //perform read
 numR--;
 if(numR == 0) up(mutex);
}

Does this successfully implement readers and writers?
A. Yes
B. I sure hope so
C. No. It allows deadlock
D. No. It creates some other problem
E. I can’t think this hard anymore

void write() {
 down(mutex);
 //perform write
 up(mutex);
}

Solving readers and writers
semaphore mutex = 1; //control access to database
int numR = 0; //number of active readers

void read() {
 numR++;
 if(numR == 1) down(mutex);
 //perform read
 numR--;
 if(numR == 0) up(mutex);
}

Does this successfully implement readers and writers?
A. Yes
B. I sure hope so
C. No. It allows deadlock
D. No. It creates some other problem
E. I can’t think this hard anymore

void write() {
 down(mutex);
 //perform write
 up(mutex);
}

Solving readers and writers
semaphore mutex = 1, num_mutex = 1; //mutex protects database, num_mutex protects numR
int numR = 0; //number of active readers

void read() {
 down(num_mutex);
 numR++;
 if(numR == 1) down(mutex);
 up(num_mutex);
 //perform read
 down(num_mutex);
 numR--;
 if(numR == 0) up(mutex);
 up(num_mutex);
}

void write() {
 down(mutex);
 //perform write
 up(mutex);
}

Does this successfully implement readers and writers?
A. Yes
B. I sure hope so
C. No. It allows deadlock
D. No. It creates some other problem
E. I can’t think this hard anymore

Solving readers and writers
semaphore mutex = 1, num_mutex = 1; //mutex protects database, num_mutex protects numR
int numR = 0; //number of active readers

void read() {
 down(num_mutex);
 numR++;
 if(numR == 1) down(mutex);
 up(num_mutex);
 //perform read
 down(num_mutex);
 numR--;
 if(numR == 0) up(mutex);
 up(num_mutex);
}

(but does privilege readers since they never have to give up the database)

void write() {
 down(mutex);
 //perform write
 up(mutex);
}

Does this successfully implement readers and writers?
A. Yes
B. I sure hope so
C. No. It allows deadlock
D. No. It creates some other problem
E. I can’t think this hard anymore

