
Function calls in assembly

1/13/25

Administrivia

• HW 1 (ASCII art in assembly) due Wed night
• Lots of extra credit:
– Another candidate in the next two days
• Lunch at 12:15 on Tuesday, Oak Room
• Research talk at 4:15pm, SMC A201 (reception at 3:45)
• Teaching demonstration at 9:30 on Wednesday (A206)

– Next Monday: MLK convocation at 11am

Recall: Loading and storing integers

• To store an int from a register to memory:
 sw reg, address #“store word”

• To load an int from memory to a register:
 lw reg, address #“load word”

• For both, address is
 (register) #use register value
 imm(register) #use imm + register value

i.e. an integer

What about storing objects in
memory?

• Assembly (and C) lack true classes

• Can store structs (basically classes w/o methods)

Recall: Linked lists

next val

first

Parts of a function call

1. Place parameters where function can get them

2. Transfer control

3. Acquire needed storage and save registers

4. Perform the task

5. Place return value where calling program can get it

6. Restore registers and free storage

7. Return control to point of origin

1. Place parameters where function can get them
5. Place return value where calling program can get it

• Power of convention:
– Put function arguments into $a0, $a1, ...
– Put return value into $v0

2. Transfer control
7. Return control to point of origin

• Program counter: Register containing address
of next instruction to execute

• jal instruction “jump and link”
– Changes PC and stores its old value in register $ra

• jr instruction changes PC to value of a register

2. Transfer control
7. Return control to point of origin

• Program counter: Register containing address
of next instruction to execute

• jal instruction “jump and link”
– Changes PC and stores its old value in register $ra

• jr instruction changes PC to value of a register

Print and increment function

middle_man: Repackaging print (aka print_and_increment)

print: addi $v0, $zero, 1
 syscall
 addi $v0, $a0, 1
 jr $ra

middle_man:
 jal print
 jr $ra

Why doesn’t middle_man (which claims to print its
argument and return it + 1) work?

print: addi $v0, $zero, 1
 syscall
 addi $v0, $a0, 1
 jr $ra

middle_man:
 jal print
 jr $ra

A. middle_man incorrectly
passes arguments

B. middle_man incorrectly
calls print

C. middle_man doesn’t
return correctly

D. middle_man doesn’t
pass out the correct
return value

E. Not exactly one of the
above

Why doesn’t middle_man (which claims to print its
argument and return it + 1) work?

print: addi $v0, $zero, 1
 syscall
 addi $v0, $a0, 1
 jr $ra

middle_man:
 jal print
 jr $ra

A. middle_man incorrectly
passes arguments

B. middle_man incorrectly
calls print

C. middle_man doesn’t
return correctly

D. middle_man doesn’t
pass out the correct
return value

E. Not exactly one of the
above

Register conventions

• Functions preserve the contents of the s
registers ($s0, $s1, ...)
– Save them to memory at beginning of function
– Restore them from memory before returning

• When a function call is made, all other
registers may change value

Register conventions

• Functions preserve the contents of the s
registers ($s0, $s1, ...)
– Save them to memory at beginning of function
– Restore them from memory before returning

• When a function call is made, all other
registers may change value

Register conventions

• Functions preserve the contents of the s
registers ($s0, $s1, ...)
– Save them to memory at beginning of function
– Restore them from memory before returning

• When a function call is made, all other
registers may change value

Only true if you
make them so

Approach 1: Save to .data segment
 .data

funcRegs: .space 8

 .text
func: la $t0, funcRegs
 sw $ra, ($t0)
 sw $s0, 4($t0)
 ...
 #function body
 ...
 la $t0, funcRegs
 lw $ra, ($t0)
 lw $s0, 4($t0)
 jr $ra

Approach 1: Save to .data segment
 .data

funcRegs: .space 8

 .text
func: la $t0, funcRegs
 sw $ra, ($t0)
 sw $s0, 4($t0)
 ...
 #function body
 ...
 la $t0, funcRegs
 lw $ra, ($t0)
 lw $s0, 4($t0)
 jr $ra

When doesn’t this work?

A. Does not scale beyond a
few functions

B. func cannot be recursive

C. func cannot be compiled
without knowing the
context of calls to it

D. More than one of the
above

E. This works in all cases

Approach 1: Save to .data segment
 .data

funcRegs: .space 8

 .text
func: la $t0, funcRegs
 sw $ra, ($t0)
 sw $s0, 4($t0)
 ...
 #function body
 ...
 la $t0, funcRegs
 lw $ra, ($t0)
 lw $s0, 4($t0)
 jr $ra

When doesn’t this work?

A. Does not scale beyond a
few functions

B. func cannot be recursive

C. func cannot be compiled
without knowing the
context of calls to it

D. More than one of the
above

E. This works in all cases

Acquire needed storage and save registers

• Issue: Making a function call overwrites $ra,
imperiling the calling function’s ability to
return

Approach 2: Save to the stack

high addr: stack

 heap
 .data segment
 .text segment
low addr: reserved for OS

grows down

grows up

Approach 2: Save to the stack

high addr: stack

 heap
 .data segment
 .text segment
low addr: reserved for OS

grows down

grows up

Stack composed of “activation
records” or “stack frames”,
each with the local variables
and saved registers for one
function call

Bottom of the stack is stored in
$sp (stack pointer)

To reserve another frame:
 $sp = $sp – (frame size)

To free the frame:
 $sp = $sp + (frame size)

Approach 2: Save to the stack

high addr: stack

 heap
 .data segment
 .text segment
low addr: reserved for OS

grows down

grows up

Stack composed of “activation
records” or “stack frames”,
each with the local variables
and saved registers for one
function call

Bottom of the stack is stored in
$sp (stack pointer)

To reserve another frame:
 $sp = $sp – (frame size)

To free the frame:
 $sp = $sp + (frame size)

Parts of a function call

1. Place parameters where function can get them

2. Transfer control

3. Acquire needed storage and save registers

4. Perform the task

5. Place return value where calling program can get it

6. Restore registers and free storage

7. Return control to point of origin

