
Memory in assembly

1/10/25

Administrivia

• HW 1 (ASCII art in assembly) due Wednesday

• Candidate’s research talk today at 4:15pm in SMC
A202 (cookies at 3:45)

 Extra credit if you email me a writeup (or several)

Recall: Assembly instruction cartoon

Registers

Processor Memory,
input/output devices,

...

load
arithmetic

store

Memory

• Big array of numbers

• Each byte (8 bit value) gets an address

• Complication: Objects are different size
– For us, integers are 4 bytes long
– So are memory addresses

Memory

• Big array of numbers

• Each byte (8 bit value) gets an address

• Complication: Objects are different size
– In MARS, integers are 4 bytes long
– So are memory addresses

Loading and storing integers

• To store an int from a register to memory:
 sw reg, address #“store word”

• To load an int from memory to a register:
 lw reg, address #“load word”

• For both, address is
 (register) #use register value
 imm(register) #use imm + register value

i.e. an integer

Which of the following
is syntactically valid?

A. lw $t0, ($t0)

B. sw $t1, -4($s1)

C. sw 0($a0), $t3

D. lw ($t5), $a5

E. Not exactly one of the above

Which of the following
is syntactically valid?

A. lw $t0, ($t0)

B. sw $t1, -4($s1)

C. sw 0($a0), $t3

D. lw ($t5), $a5

E. Not exactly one of the above (A & B)

Two kinds of memory errors

• Non-aligned memory address:
 lw $a0, 11($zero)

• Illegal memory address (address out of range):
 lw $a0, 16($zero)

Two kinds of memory errors

• Non-aligned memory address:
 lw $a0, 11($zero)

• Illegal memory address (address out of range):
 lw $a0, 16($zero)

Reserving memory inside a program

 .data
 .align 2
var: .word 10, -1
var2: .space 4

 .text
 la $a0, var
 lw $t0, ($a0)
 lw $t1, 4($a0)

Reserving memory inside a program

 .data
 .align 2
var: .word 10, -1
var2: .space 4

 .text
 la $a0, var
 lw $t0, ($a0)
 lw $t1, 4($a0)

switch to writing in data segment
(where variables live)

switch to writing in text segment
(where code lives)

Reserving memory inside a program

 .data
 .align 2
var: .word 10, -1
var2: .space 4

 .text
 la $a0, var
 lw $t0, ($a0)
 lw $t1, 4($a0)

skip as needed so the address of the
next object is multiple of 22 = 4

Reserving memory inside a program

 .data
 .align 2
var: .word 10, -1
var2: .space 4

 .text
 la $a0, var
 lw $t0, ($a0)
 lw $t1, 4($a0)

store integer (word) 10 at location
whose address is labeled “var” and

integer -1 four bytes later

reserve 4 bytes of space at location
whose address is labeled “var2”

Reserving memory inside a program

 .data
 .align 2
var: .word 10, -1
var2: .space 4

 .text
 la $a0, var #put address of var into $a0
 lw $t0, ($a0) #loads the 10
 lw $t1, 4($a0) #loads the -1

Arrays in assembly

• Contents stored in contiguous memory, one cell
after another
– Each cell is sized for the object being stored
– Address of ith cell:
 address of 0th + i * object_size

• No memory protection or notion of array’s length

Arrays in assembly

• Contents stored in contiguous memory, one cell
after another
– Each cell is sized for the object being stored
– Address of ith cell:
 address of 0th + i * object_size

• No memory protection or notion of array’s length

Easy way to multiply by a power of 2

• sll (“shift left logical”) instruction:
 sll $t0, $t1, 1 #$t0 = $t1 * 2
 sll $t0, $t1, 2 #$t0 = $t1 * 4 (22 = 4)
 sll $t0, $t1, 3 #$t0 = $t1 * 8 (23 = 8)

• Last number is # zeros to add to end of binary
representation of $t1

Which of the following loads the value of
array[i+3] into $a0?

($t0 has beginning of array (of ints); $t1 has i)

A. lw $a0, 12($t0)
B. sll $t2, $t1, 2
 addi $t2, $t2, 3
 add $t2, $t2, $t0
 lw $a0, ($t2)
C. addi $t2, $t1, 3
 sll $t2, $t2, 2
 add $t2, $t2, $t0
 lw $a0, ($t2)

D. sll $t2, $t1, 2
 add $t3, $t2, $t0
 lw $a0, 12($t3)
E. Not exactly one of

the above

Which of the following loads the value of
array[i+3] into $a0?

($t0 has beginning of array (of ints); $t1 has i)

A. lw $a0, 12($t0)
B. sll $t2, $t1, 2
 addi $t2, $t2, 3
 add $t2, $t2, $t0
 lw $a0, ($t2)
C. addi $t2, $t1, 3
 sll $t2, $t2, 2
 add $t2, $t2, $t0
 lw $a0, ($t2)

D. sll $t2, $t1, 2
 add $t3, $t2, $t0
 lw $a0, 12($t3)
E. Not exactly one of

the above (C & D)

What about strings?

• Array of chars (one byte each)
– End marked with 0 (not ‘0’)

• Access individual chars with
– lbu register, address #“load byte unsigned”
– sb register, address #“store byte”

Which of the following lines of code is incorrect
for a loop that prints a string one char at a time?
#assume t0 has the address of the string
 lbu $a0, ($t0) #A
loop: beq $a0, $zero, exit #B
 addi $v0, $zero, 11
 syscall
 addi $t0, $t0, 1 #C
 b loop
exit: ... #exit the program (or whatever)

 #D = None, it works E = Something else

Which of the following lines of code is incorrect
for a loop that prints a string one char at a time?
#assume t0 has the address of the string
 lbu $a0, ($t0) #A
loop: beq $a0, $zero, exit #B
 addi $v0, $zero, 11
 syscall
 addi $t0, $t0, 1 #C
 b loop
exit: ... #exit the program (or whatever)

 #D = None, it works E = Something else
(Need to read new char after increment)

Other important string information

• Better way to print a string: syscall 4

• To store a string into the data segment:
 .data
str: .asciiz “hello world”

