
Pointer arithmetic and
linked lists in C

1/27/25

Administrivia

• HW 3 (memory diagrams and binary) due
tonight

• Before class on Wednesday, read Chapter 11
through 11.3 from Dive Into Systems
(beginning of the Storage chapter)

Find first non-space

Suppose you have a string called line
Find its first non-space char (set i to its index)

int i = 0; //index into line
while(line[i] == ‘ ‘) //advance i to 1st non-space
 i++;

Find first non-space

Suppose you have a string called line
Find its first non-space char (set i to its index)

int i = 0; //index into line
while(line[i] == ‘ ‘) //advance i to 1st non-space
 i++;

Copying a substring

Suppose line stores a string and word is a char*
Copy the first word (up to space) starting at line[i] to word

int j = 0; //index in word
while((line[i] != ‘ ‘) && (line[i] != 0)) { //while in word
 word[j] = line[i]; //copy next char
 i++; //advance indices
 j++;
}
word[j] = 0; //add terminating 0

Copying a substring

Suppose line stores a string and word is a char*
Copy the first word (up to space) starting at line[i] to word

int j = 0; //index in word
while((line[i] != ‘ ‘) && (line[i] != 0)) { //while in word
 word[j] = line[i]; //copy next char
 i++; //advance indices
 j++;
}
word[j] = 0; //add terminating 0

Yuck!

• Both use string[index] construct

– potentially lots of indices

– hard to print part of a word (requires a copy)

– arguably, lots of typing

Alternative: Pointer arithmetic

• Use a pointer into the array

• Pointer itself moves: ptr++ advances it
– Can also use other arithmetic

– adding “1” moves address by 1 cell (not 1 byte)

• Access value at pointer’s location with *ptr

Finding first non-space revisited

Suppose you have a string called line
Find its first non-space char (set i to its index)

char* ptr = line; //pointer into line
while(*ptr == ‘ ‘) //advance i to 1st non-space
 ptr++;

If A is an array and it has been
assigned to the pointer ptr,

what does *ptr give?
A. A syntax error
B. Cell 0 of array A
C. Some other cell of array A
D. The size of array A
E. Depends on the type of array A

If A is an array and it has been
assigned to the pointer ptr,

what does *ptr give?
A. A syntax error
B. Cell 0 of array A
C. Some other cell of array A
D. The size of array A
E. Depends on the type of array A

If A is an array and it has been
assigned to the pointer ptr,
what does *(ptr+1) give?

A. A syntax error
B. Cell 0 of array A
C. Cell 1 of array A
D. The size of array A
E. Depends on the type of array A

If A is an array and it has been
assigned to the pointer ptr,
what does *(ptr+1) give?

A. A syntax error
B. Cell 0 of array A
C. Cell 1 of array A
D. The size of array A
E. Depends on the type of array A

If A is an array and it has been
assigned to the pointer ptr,

what does ptr++ do?
A. Give a syntax error
B. Increment the value stored in cell 0 of array A
C. Advance ptr so it stores the address one

greater than the address of cell 0 of array A
D. Advance ptr so it stores the address of cell 1

of array A
E. Depends on the type of array A

If A is an array and it has been
assigned to the pointer ptr,

what does ptr++ do?
A. Give a syntax error
B. Increment the value stored in cell 0 of array A
C. Advance ptr so it stores the address one

greater than the address of cell 0 of array A
D. Advance ptr so it stores the address of cell 1

of array A
E. Depends on the type of array A

What does the following code do?
 void f(char* a, char* b) {
 while((*a++ = *b++));
 }

A. Advances a and b to point to the first
character at which they differ

B. Copies string b to string a
C. Increments characters in strings a and b
D. Memory error (seg fault/bus error)
E. Something unpredictable

What does the following code do?
 void f(char* a, char* b) {
 while((*a++ = *b++));
 }

A. Advances a and b to point to the first
character at which they differ

B. Copies string b to string a
C. Increments characters in strings a and b
D. Memory error (seg fault/bus error)
E. Something unpredictable

What does the following code do?
 int f(char* a) {
 char* b = a;
 while(*b++);
 return b-a-1;
 }

A. Returns the length of string a
B. Changes the first char of string a to \0 and

returns -1
C. Returns the first index whose character matches

the string’s first character (or the string length)
D. Memory error (seg fault/bus error)
E. Infinite loop

What does the following code do?
 int f(char* a) {
 char* b = a;
 while(*b++);
 return b-a-1;
 }

A. Returns the length of string a
B. Changes the first char of string a to \0 and

returns -1
C. Returns the first index whose character matches

the string’s first character (or the string length)
D. Memory error (seg fault/bus error)
E. Infinite loop

What about this?

int g(char* a, char* b) {
 while(*a++ == *b++)
 if(*(a-1) == 0)
 return 0;
 return *(a-1) - *(b-1);
}

