
Threads

2/7/25

Thread

• Unit of program execution
– has own program counter, stack, etc

• All threads of a process share address space
– same global variables, state of open files etc

Moore’s law

Figure: Herb Sutter “The free lunch is over: A fundamental turn toward concurrency in software”
 Dr. Dobb's Journal, 30(3), March 2005.
 http://www.gotw.ca/publications/concurrency-ddj.htm

How hot is your CPU?

• https://www.youtube.com/watch?feature=pla
yer_detailpage&v=7uBNCN6v_gk#t=30

https://www.youtube.com/watch?feature=player_detailpage&v=7uBNCN6v_gk
https://www.youtube.com/watch?feature=player_detailpage&v=7uBNCN6v_gk

Parallel computing in the small

http://i561.photobucket.com/albums/ss59/gamenews86/Die_Map.jpg

Why have multiple threads?

• Performance
– run like this

 instead of this

Why have multiple threads?

• Performance
– run like this

 instead of this

• Responsiveness
– one thread runs user interface while others

compute in background (ex: mobile platforms,
web servers)

Two relevant concepts

• Parallelism
– Using more resources to complete job faster
– Ex: multiple cooks splitting food prep

• Concurrency
–Managing access to shared resources
– Ex: two cooks both trying to get dish into oven

Situation: You call a professor to see if they are
free to meet. They say “yes”, but another
student is in their office by the time you get
there.
Is this situation an example of an issue with
parallelism or concurrency?
A. Primarily parallelism
B. Primarily concurrency
C. Equally both
D. Neither
E. What are we talking about again?

Situation: You call a professor to see if they are
free to meet. They say “yes”, but another
student is in their office by the time you get
there.
Is this situation an example of an issue with
parallelism or concurrency?
A. Primarily parallelism
B. Primarily concurrency
C. Equally both
D. Neither
E. What are we talking about again?

Fork-join pattern

http://cnx.org/contents/66607f05-723f-47b7-a3ef-0c1f17ee00ee@7.1:6/An_Introduction_to_High-Perfor

How do we do this in C?

• pthreads:
pthread_create(pthread_t, NULL, function, arg)

pthread_join(pthread_t, NULL)

Using threads for parallelism

• Move code for thread into a function
• Create a struct to hold arguments
• Make threads and pass appropriate structs
• Cast arguments from void*
• Join threads
• Cast return values from void*

Speedup

Speedup =
Serial (non-parallel) running time

Parallel running time

Speedup

• Linear speedup: speedup equal to the number
of processing elements

• Sublinear speedup: less than this
• Superlinear speedup: more than this

Speedup =
Serial (non-parallel) running time

Parallel running time

Is speedup a topic related to parallelism or
concurrency?

A. Primarily parallelism

B. Primarily concurrency

C. Equally both

D. Neither

E. What are we talking about again?

Is speedup a topic related to parallelism or
concurrency?

A. Primarily parallelism

B. Primarily concurrency

C. Equally both

D. Neither

E. What are we talking about again?

Why not linear speedup? (1)
• Some parts of the code can’t run in parallel
– Initialization
– I/O
– critical sections: areas where we ensure at most

one thread is running

Why not linear speedup? (1)
If B = fraction of program that must run serially
 T1 = total time on 1 processing element
What is best possible time on p elements?
A. T1/p + B
B. T1B/p
C. T1(1-B)/p + B
D. T1(1-B)/p + T1B
E. None of the above

Why not linear speedup? (1)
If B = fraction of program that must run serially
 T1 = total time on 1 processing element
What is best possible time on p elements?
A. T1/p + B
B. T1B/p
C. T1(1-B)/p + B
D. T1(1-B)/p + T1B (called Amdahl’s Law)
E. None of the above

