Preemptive Parallel Job Scheduling
for Heterogeneous Systems
Supporting Urgent Computing

Presented by
Lizzy Shakman & Oscar Gardella

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9328750&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9328750&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9328750&tag=1

Urgent Computing

- Used for tasks that have real life time limitations (eg. earthquakes, tsunamis, etc.)

- In UC a computation operates under a strict deadline after which computation results
are useless

- Typically UC uses dedicated resources

- Pros: Always has resources available
- Cons: Wastes processors most of the time, no backup plan

- Requires a job scheduling method that can handle normal and urgent jobs

- Without this can either delay normal jobs significantly, or potentially make urgent jobs wait

- Oftentimes preemption is used to allow urgent jobs to “jump ahead”

What 1s Preemption?

Preemption is defined as “the interruption or replacement of a scheduled program.”
- Essentially preemption tells the machine that there is a job that needs to be done immediately, forcing it
to pause or quite enough current jobs to make it run

Preemption can delay urgent jobs due to having to save intermediate state of the
preempted jobs (which is bad for such time constrained jobs)
Becomes more challenging with integration between coprocessors devices and the

host processor
- Forces you to move memory of preempted jobs to host, which is called Process Swapping

Proposed Job Scheduling Method

- Partial Process Swapping (PPS): Preemption mechanism for heterogeneous systems
using In-memory process swapping

- Urgent Job First with Backfilling (UJFB): Preemption-based job scheduling algorithm

- By swapping processes to memory lower preemption delays can be achieved

- Additionally 1t decreases the response time and slow down

- Response Time: Total “Wall clock time” from job submission to its completion
- Slowdown: Response time of the job normalized by the running time
- When slowdown = 1, the job executes without any delays, with slowdown > 1 being worse

Response = T,, + T,

Response

Slowd =
owdown T,

Preemptive Job Scheduling for UC

Proposed job scheduling method that addresses in shared heterogenous UC systems

- 1) A preemption mechanism using in-memory process swapping
- 2) A preemption-based job scheduling algorithm for preventing significant delays of urgent jobs

Kill/Restart: Preempting a job fully kills the job, and starts it again later

- Dead jobs return to scheduler queue - Partial results are lost - Time 1s wasted

Suspend/Resume: Preempting a job 1s paused, and started again later

- Partial results are saved -Takes time to save results in different memory, called Swapping Time

Preemption Delay (PD): Longest swapping time among the processes

Pl = max Sp.
15P_<..Np

Partial Process Swapping (PPS)

- Has two system functions that save/restore VE memory of suspended VE processes.
- Swap Out: Releases VE memory by saving part of it to VH memory
- Swap In: Restores the memory saved in VH memory to VE memory so that execution can resume

- Preempted jobs need to resume on the same VE it was preempted from

- PPS makes VE memory return to its VH, making it necessary to resume processes in the same cluster
- PPS only partially swaps VE memory, meaning that processes must resume on their original VE

- VE: Virtual engine
- VH: Virtual host

Urgent Job First with Backfilling (UJFB)

- UJFB aims to prevent urgent jobs being delayed while also reducing response time
and slowdown for regular jobs
- Executes an urgent job by performing one of the following three subtasks (fig 5):

1) Prioritize urgent jobs to be executed before regular jobs
2) Backfill urgent jobs
3) Preempt regular jobs to give resources to urgent jobs

- UJFB backfills like conservative where all urgent jobs backfill before regular jobs
- Urgent Queue: Only used if there are multiple urgent jobs can’t simultaneously run

An urgent job
arrives

backfilled regular jobs queue

Preempt
regular jobs

Figure 5. UJFB algorithm for executing urgent jobs.

Algorithm 1 The UJFB Algorithm
Input: urgentQ > Queue of urgent jobs
Input: regularQ > Queue of regular jobs
Input: runningJobs > Currently running jobs
1: procedure onArrival(job)
2¢ if job is urgent then > An urgent job
3 if canExecute(job) then > Resources are
available
if canBackfill(job) then > Backfilling
backfill(job)
else > Precede regular jobs
execute(job)
end if
else if canRunWithPreempt(job) then
10: pJobs < selectJobs(runningJobs)
11: preempt(pJobs) > Preemption
12: execute(job)
13: else
14: enqueue(urgentQ, job)
15: end if
16: else > A regular job
17: enqueue(regularQ, job)
18: end if
19: end procedure

Urgent Lateness (U,)

e Basic wait time and response time metrics aren’t useful for urgent jobs
e Used to evaluate the effects of a job scheduling method on urgent jobs

1. Calculate the slowdown of each urgent job (Equation 2)
2. Find the maximum slowdown among urgent jobs (Equation 4)

Urp = max Slowdown,,

1<u<Ny

Tsunami Simulation

Number of CPUs | Job length (mmutes) Maximum slowdown

I S Y S ——
e [s

12

Table 1. The number of processors and lengths of urgent jobs for the
tsunami simulation.

Tsunami Simulation

e
-—
©
N
.'._=
|
X

O &\ ok o\ © A A0
ARG A AR AL SRR A

Hour

Figure 2. Arrival times of injected urgent jobs.

o= - o
= =
S 8
ge)

= S
Le, O
))
@ @
()] (®))
© ©
2 2
< <

(¢ 'ES. (b) Conservative Backfill.

Figure 3. Slowdowns of regular and urgent jobs.

Partial Process Swapping (PPS)

VE

Running

Process P,

Running

= Preemption == Resume

e Red lines: the flow of preempting a job process using PPS
e Blue lines: the flow of resuming a job after it 1s preempted

Figure 4. Preemption using PPS.

In UJFB, urgent jobs are
executed under three cases:

Processors

The urgent job is executed by
preceding regular jobs that are
waiting in the queue.

Processors

The urgent job is executed by
backfilling.

Processors

The urgent job is executed by
preempting regular jobs.

Now

2
S
=

sl

2(3|5]6 o 3
(o]
Regular queue @ :
.9 1 |
4 o 4|2
& v
An urgent job -
Time

arrives

Fal9
Regular queue

8

An urgent job
arrives

4 11

; 10 Regular queue

]

1

: An urgent job
Time arrives

Figure 6. Urgent job execution by preceding regular jobs.

Processors

Processors

56
Regular queue

Preceded job

g

Regular queue

[] Urgent job

Figure 7. Urgent job execution by backfilling.

12

[] Urgent job [l Preempted job

Figure 8. Urgent job execution by preemption.

Time

.

Regular queue

Process swapping performance

Input Size A Avg. Swap Size Avg. S,
(Class) (Mcgabytes) (Seconds)
| BT [118,531 0.022
0014
[FT 6707 [o0m
s [msw oo
0073
. . . \lC \()6.758 0.093
Process swapping: moving process memory from device 0022
: (BT [2esea [00w
to host memory and vice versa [cc s
[Fp |60 [o0D
: 1630.167 0.259
Performance depends on the process size _—_ -
L : U (2592 oo
Measured the swapping time by swapping out each 5057
0041

application from the VE to the VH at random times A

during its execution 0676

633914 0118

MG 1741.941 0.323

E EED
| BT [s573680 [0106
.
E
[FT
. . N
Evaluated the effects of process swapping on different -— :

process sizes by executing the applications with _ 0148
0.176
0.013
0544
I YT SR KT

0.1%
!

CG 0.082
different input sizes

FT
| 2
E

F

I 3

L 2

S 25

s 2

C

E 0014
L %

S

B

C 1

E 7

FT 5

BT
S
:]
P
T
S
u
SP
T
G
P
IS
U
P
T
G
P
IS

Table 3. Swapping time results of the NPB applications.

Process swapping performance

0
0]
£
-
o)
=
a
Q
©
=
)

500 1000 1500 2000 2500
Swap size (MB)

Figure 9. Performance of PPS.

)
ek
o N

B FCFS
UJF

mFCFS
BUJF
@ Backfill B Backfill
mEASY mEASY
HIH BUJFB e @ UJFB
0 m) moll_

(a) SDSC response time of regular jobs. (b) SDSC slowdown of regular jobs. (c) SDSC Uy..
Figure 10. The results of the SDSC workload.

(0]

Responsetime (h
Average Slowdown
Urgent Lateness (UL)

2

mFCFS

15 mFCFS
BUJF BUJF
1 @ Backfill @ Backfill
® EASY BEASY
0.5 o UJFB |:| |:| oUJFB
0 0 I

N Wb
(oo il o> I o

Responsetime (h)

T
o

Average Slowdown
Urgent Lateness (UL)

(a) LANL response time of regular jobs. (b) LANL slowdown of regular jobs. (c) LANL Uyp.
Figure 11. The results of the LNLL workload.

600000 100000

| <
S
BFCES SRR BFCFS S 80000 mFCFS
mUJF 400000 mUJF
@Backfil D 300000 o Backfil
(@)
mEASY 8200000 8 EASY

UL)

60000 mUJF
@ Backfill

40000 mEASY

Responsetime (h
Urgent Lateness

oUJFB é 100000 aUJFB 20000 |:|I BUJFB

(a) SX-ACE response time of regular jobs. (b) SX-ACE slowdown of regular jobs. (c) SX-ACE Uy.

Figure 12. The results of the SX-ACE workload.

Algorithm UL Num. preemption
FCFS 90996.73
UJF 641.61
Backfill 32853.86
EASY 34688.48
UJFB 1.05

Table 2. SX-ACE results for urgent jobs.

Evaluation with Longer Swapping Times

e Found that longer swapping times do not affect regular jobs’ performance
e Longer swapping times can significantly delay urgent jobs (another reason for PPS)

o This is due to increased preemption delays which consequently increase lateness of urgent jobs

00.1-2s(PPS) m1.8-40s m3.6-80s

2.9
2
1.5

TN TN N

Response Slowdown Urgent
Time Lateness

Figure 13. The LANL results with longer swapping times.

> >
O O
C C
1)) 1))
oo 3
O O
® 1))
— —
L L

Number of nodes Number of nodes

Figure 14. Job arrival times. Figure 15. Number of nodes required by jobs.

mFCFS
BUJF

@ Backfill
BEASY
oUJFB

mFCFS
mUJF

@ Backfill
BEASY
oUJFB

mFCFS
mUJF

@ Backfill
BEASY
BUJFB

-
(&)}

o
o

Urgent Lateness (UL)

5
£
)
=
-
)
0
c
o
Q.
0
O
14

O =~ N W b O OO N
Average Slowdown
-t

0 (=

(a) DWD response time of regular jobs. (b) DWD slowdown of regular jobs. (c) DWD Uy..

Figure 16. The results of DWD workload.

Conclusion

- Hard to test this out in real world situations (yay ethics)

- Potential for different protocols based on how urgent the job 1s (kill vs. pause)
- Use their method of measuring ability to handle UC in future research

- Look at how computer architecture can improve running time of PPS

