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From Theoretical to Reality

e Slim Fly’s benefits have not been empirically tested in
real-world environments.
e Research paper objective
o  Todeploy an at-scale SF network and rigorously evaluatz
its performance, cost, and power efficiency.
e Approach

o Implementation of open-source cabling and physical
layout routines to facilitate practical deployments.
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Deployment Challenges and Implementation

e Challenges

o  Ensuring accurate cabling to maintain SF's low-diameter benefits
o Managing cost and power efficiency while keeping practical scalability
e |mplementation

o Physical layout was optimized to reflect Slimfly setup.
o  Developed open-source cabling tools to assist in error-free installation.
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Proposed Multipathing

e FatPaths as a basis

@)

Utilizes multiple paths to avoid congestion and evenly
distribute traffic.

e Improvements made upon it (Layering)

o

Achieves improved load balancing through layered
routing approaches.

Incorporates adaptive routing algorithms that are aware
of network state.

Algorithm 1: Construct routing layers; details are in § 4.3

Input : Network topology G = (V, E), number of layers |L|

Result : A set of L routing layers

/! W eRNNr contains weights of links; p is a priority
queue, with entries being pairs of nodes

1 W =init_link_weight_matrix() // Set all matrix entries to 0
2 p=init_p_queue(G) // Each node pair gets the same priority
3 L={E} // Layer 0 contains all the links (E)

4 for/=1to|L|—1do

5 init_layer(/) // Initialize the next layer as empty

6 node_pairs = copy_pairs(p)

7 while node_pairs # 0 do

8 pair = node_pairs.dequeue()

9 path = find_path(G, W, pair, [)

10 if valid(path) then

1 update_priorities(path, p)

12 update_weights(path, W)

13 add_path_to_layer(path. G. )

14 end

15 end

16 L=LU{l} // Add a new layer to finalized layers

17 end

Initial network: all the links. FatPaths: layers as link subsets.  This work: layers as sets of paths.
TR (solid links) ETEEY (solid paths)
(XX (FarPaths and this work)  (RSPEFY(dashed links) BT (dashed paths)




Implementing Physical Multipathing

e Final tweaks and adjustments
o  Accounted for practical problems such as link failures, deadlocks and traffic variations
o  Tailored FatPaths routing for optimized performance with SlimFly characteristics

e Physical Implementation
o  Load balancing is achieved by distributing traffic over multiple equal-cost paths.
o  Systematic approach to physical and logical network design enabled efficient routing.
o  Validated the FatPaths approach through real-world measurements and experiments.



Theoretical Analysis of Paths

[ ] RU ES and p% 80%
o RUES (Random Uniform Edge Selection) is used to measure theoretical equitable traffic ; 60%
handling § aox

o p% indicates the fairness in path usage at equilibrium £ 20

o ‘This Work'’ is unadjusted physical observed data 0%
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4 Layers AVG

Theoretical shortest path lengths remain consistent, facilitating predictability in
performance.

Analyses show a favorable distribution of paths, which is essential for load balancing.

Fraction of Switch Pairs

High path diversity is inherent in SF topology, contributing to robustness against failures
and congestion.
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Results and Insights From Analysis

e Throughput
o  Total amount of data transmitted through the network per unit time.

e SF's max throughput outperforms standard FatPaths in most cases, indicating potential for high
efficiency in data handling.
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Empirical Evaluation

Comparisons

Microbenchmarks were used to present SF’s raw performance

o

Slimfly was shown to surpass traditional 2-Level

Fat-Trees in both latency and throughput.

Slimfly was tested across diverse HPC and deep learning

workloads.

on basic network tests.
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Empirical Results and Conclusions Made

e Comparison Benchmarks
o  SFshowecases general improvements in common HPC tasks and scientific simulations over other methods
e DeepLearning Uses
o  Showed significant speedups in distributed deep neural network training over traditional topologies.
e Scalability & Cost Analysis
o  Offers generally higher scalability and cost-effectiveness, especially in larger installations, but becomes
disproportionate as size and scale increase.
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