MapReduce: Simplified
Data Processing on

Large Clusters

Khue Le and Izn E Allah

Intro

Google tackles vast amounts of raw data, from web documents to user logs.
The goal: Extract valuable information like inverted indices, web document structures, and user query patterns.

Challenge:

While the computations are conceptually simple, the sheer volume of data demands distribution across numerous
machines.

Parallelizing tasks, managing data distribution, and ensuring fault tolerance introduce complexities.
Solution: MapReduce:
A new abstraction inspired by functional programming concepts like 'map' and 'reduce’.

This model simplifies large-scale computations, ensuring automatic parallelization and fault tolerance through
re-execution.

Programming model

Core Principle:
- MapReduce is a functional programming model designed to process and generate large datasets with a parallel,
distributed algorithm on a cluster.
Two Key Functions:
1. Map: Takes input pairs and produces a set of intermediate key/value pairs.
- Example: If the task is to count the number of occurrences of words in a document, the map function breaks down
the document into words and creates a key/value pair for each word, typically (word, 1).
2. Reduce: Merges all intermediate values associated with the same key.
-Example: For the word counting task, the reduce function would sum up the values for each word, producing an output
of (word, total count).
Data Flow:
- Input data is split into chunks and processed by the map tasks in parallel.
- The MapReduce library groups the intermediate key/value pairs by keys.
- The reduce tasks then operate on the grouped data, producing the final output.

Sample code

map (String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate (w, "1");

reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt (v);
Emit (AsString(result));

The map function emits each word plus an associated count of occurrences (just ‘1’ in this simple example). The
reduce function sums together all counts emitted for a particular word

Implementation

User

Program
1) fork . - s
) (1) fork €1) fork
._ 2)
(2)- assign
_.assign reduce .
map

\wnrker

split O

(6) write

output
__(5) remote read file 0

SP“' 2 (3) read @ (4) local write
: output
split 3 — file 1

split 1

split 4
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Figure 1: Execution overview

Fault tolerant

Worker failure: Master ping workers periodically. If no response is received from a

worker in a certain amount of time, the master marks the worker as fail. The task is
then assigned to another worker and the whole progress restart again. Complete
map task are re-executed and complete reduce task do not.

- MapReduce is resilient to large-scale worker failures.

- Master failure: Unlikely, but If the master task dies, a new copy can be started from
the last checkpointed state. But most of the time the implementation aborts the
MapReduce computation if master fails.

- Back-up tasks : When a MapReduce operation is close to completion, the master

schedules backup executions of the remaining in-progress tasks.

Refinement

- Partitioning Function:
- Users specify desired number of reduce tasks/output files.
- Default partitioning uses hashing for balanced partitions.
- Custom partitioning functions allow for specific data groupings, e.g., grouping URLs by host.

- Ordering Guarantees:
- Within a partition, key/value pairs are processed in increasing key order.
- Facilitates sorted output files for efficient key-based lookups.

- Combiner Function:
- For tasks with repetitive intermediate keys, a combiner function can partially merge data before network transfer.
- Acts on each machine performing a map task, often using the same code as the reduce function.

- Input and Output Types:
- Supports various data formats, from text to key/value pairs.
- Users can define custom readers for unique data sources, like databases.

Refinement

Side-effects:
- Allows auxiliary files as additional outputs.
- Ensures atomic and idempotent side-effects, typically using temporary files.

Skipping Bad Records:
- Mechanism to skip records causing deterministic crashes.
- Helps in making forward progress despite bugs in user code.

Local Execution:
- For debugging, an alternative implementation executes all work sequentially on the local machine.

Status Information:
- Master provides an HTTP server displaying computation progress, worker failures, and task outputs.

Counters:
- Facility to count event occurrences, e.g., number of words processed.
- Useful for sanity checks and monitoring live computation progress.

Performance

Compare the performance of on two computations running on a large cluster of
machines.

- Grep program search for rare 3-character pattern approximately 1 terabyte of data
- The sort program also sort approximately 1 terabyte of data, 1010 100-byte

records

Grep program data transfer rate:

Input (MB/s)

= 2 2
- 8 & 8
| | | |

RIS W S
20 40 60 80

Seconds

Figure 2: Data transfer rate over time

100

|

15000
10000 <

5000 —

Input (MB/s)

0

15000 -
10000
5000 —

Shuffle (MB/s)

Done

20000
15000 —
10000

5000 —

Output (MB/s)

— 1T
500 1000

20000
15000
10000 —

5000 —

0

500 1000

0

[rrmem

o s S A

500 1000
Seconds

(a) Normal execution

—— - v
500 1000

Seconds
(b) No backup tasks

15000
10000 —

5000 —
0

0

20000
15000 —
10000 —

5000 —

e 4" o e

—
500 1000

FANITASSY

0

Figure 3: Data transfer rates over time for different executions of the sort program

—f—r— ——
500 1000

Seconds
(c) 200 tasks killed

Experience and Application

Large-scale machine learning problems

- Clustering problems for the Google News and Google products

- Extraction of data used to produce reports of popular queries (e.g. Google Zeitgeist)

- Extraction of properties of web pages for new experiments and products (e.g. extraction
of geographical locations from a large corpus of web pages for localized search)

Large-scale graph computations.

Conclusion

- Easy to use, even for programmers without experience with parallel and distributed
systems

- Alarge variety of problems are easily expressible as MapReduce computations: web
search service, sorting, data mining, machine learning,etc.

Solving large computational problem with the resources from thousands of machines.

Thank you!

