
MapReduce: Simplified
Data Processing on

Large Clusters
Khue Le and Izn E Allah

Intro

Google tackles vast amounts of raw data, from web documents to user logs.
The goal: Extract valuable information like inverted indices, web document structures, and user query patterns.

Challenge:

While the computations are conceptually simple, the sheer volume of data demands distribution across numerous
machines.

Parallelizing tasks, managing data distribution, and ensuring fault tolerance introduce complexities.

Solution: MapReduce:

A new abstraction inspired by functional programming concepts like 'map' and 'reduce'.

This model simplifies large-scale computations, ensuring automatic parallelization and fault tolerance through
re-execution.

Programming model
 Core Principle:
 - MapReduce is a functional programming model designed to process and generate large datasets with a parallel,
distributed algorithm on a cluster.
Two Key Functions:
 1. Map: Takes input pairs and produces a set of intermediate key/value pairs.
 - Example: If the task is to count the number of occurrences of words in a document, the map function breaks down
the document into words and creates a key/value pair for each word, typically (word, 1).
 2. Reduce: Merges all intermediate values associated with the same key.
 -Example: For the word counting task, the reduce function would sum up the values for each word, producing an output
of (word, total count).
Data Flow:
 - Input data is split into chunks and processed by the map tasks in parallel.
 - The MapReduce library groups the intermediate key/value pairs by keys.
 - The reduce tasks then operate on the grouped data, producing the final output.

Sample code

The map function emits each word plus an associated count of occurrences (just ‘1’ in this simple example). The

reduce function sums together all counts emitted for a particular word

Implementation

Fault tolerant
- Worker failure: Master ping workers periodically. If no response is received from a

worker in a certain amount of time, the master marks the worker as fail. The task is

then assigned to another worker and the whole progress restart again. Complete

map task are re-executed and complete reduce task do not.

- MapReduce is resilient to large-scale worker failures.

- Master failure: Unlikely, but If the master task dies, a new copy can be started from

the last checkpointed state. But most of the time the implementation aborts the

MapReduce computation if master fails.

- Back-up tasks : When a MapReduce operation is close to completion, the master

schedules backup executions of the remaining in-progress tasks.

Refinement

- Partitioning Function:
 - Users specify desired number of reduce tasks/output files.
 - Default partitioning uses hashing for balanced partitions.
 - Custom partitioning functions allow for specific data groupings, e.g., grouping URLs by host.

- Ordering Guarantees:
 - Within a partition, key/value pairs are processed in increasing key order.
 - Facilitates sorted output files for efficient key-based lookups.

- Combiner Function:
 - For tasks with repetitive intermediate keys, a combiner function can partially merge data before network transfer.
 - Acts on each machine performing a map task, often using the same code as the reduce function.

- Input and Output Types:
 - Supports various data formats, from text to key/value pairs.
 - Users can define custom readers for unique data sources, like databases.

Refinement

 Side-effects:
 - Allows auxiliary files as additional outputs.
 - Ensures atomic and idempotent side-effects, typically using temporary files.

 Skipping Bad Records:
 - Mechanism to skip records causing deterministic crashes.
 - Helps in making forward progress despite bugs in user code.

 Local Execution:
 - For debugging, an alternative implementation executes all work sequentially on the local machine.

 Status Information:
 - Master provides an HTTP server displaying computation progress, worker failures, and task outputs.

 Counters:
 - Facility to count event occurrences, e.g., number of words processed.
 - Useful for sanity checks and monitoring live computation progress.

Performance

- Compare the performance of on two computations running on a large cluster of

machines.

- Grep program search for rare 3-character pattern approximately 1 terabyte of data

- The sort program also sort approximately 1 terabyte of data, 10^10 100-byte

records

- Grep program data transfer rate:

Experience and Application

- Large-scale machine learning problems

- Clustering problems for the Google News and Google products

- Extraction of data used to produce reports of popular queries (e.g. Google Zeitgeist)

- Extraction of properties of web pages for new experiments and products (e.g. extraction

of geographical locations from a large corpus of web pages for localized search)

- Large-scale graph computations.

Conclusion

- Easy to use, even for programmers without experience with parallel and distributed

systems

- A large variety of problems are easily expressible as MapReduce computations: web

search service, sorting, data mining, machine learning,etc.

- Solving large computational problem with the resources from thousands of machines.

Thank you!

