
DRAS: 
Deep Reinforcement Learning 
for Cluster Scheduling in 
High Performance Computing

Yuping Fan, Boyang Li, Dustin Favorite, Naunidh 
Singh, Taylor Childers, Paul Rich, William Allcock,
Michael E. Papka, and Zhiling Lan

Present by: An Trieu & Rosie Vuong



Introduction



Heuristics are the prevailing approaches in 
HPC cluster scheduling.

● First come, first served (FCFS) with 
EASY backfilling → Scheduling 
Policy.

● Bin packing → High Utilization.

Common scheduling goals include
high system utilization, good user 
satisfaction and job prioritization.

Optimization methods focus on optimizing 
immediate scheduling objective(s) without 
regard to long-term performance.



However:!!!

In case of sudden variation in workloads, 
system administrators have to manually 
tune the algorithms and parameters in 
methods to mitigate performance 
degradation.

As HPC systems become increasingly 
complex combined with highly diverse 
application workloads, such a manual 
process becomes challenging, 
time-consuming, and error-prone.

Previous studies do not take into account two special features of cluster scheduling in 
HPC, that is, resource reservation to prevent job starvation and backfilling to reduce 
resource fragmentation.



The goal of the agent is twofold:

● To improve HPC scheduling 
performance beyond the existing 
approaches.

● To automatically adjust scheduling 
policies in case of workload changes.

An automated HPC 
scheduling agent 
named DRAS



Reinforcement Learning

- Reinforcement learning: learn an optimal policy (maximize reward) through interaction 
with the environment (series of actions) in random situations (states). 

- Interaction: 
- Agent interacts with a dynamic environment in discrete time steps.
- At each time step (t), agent observes the state (st) and takes an action (at).
- Environment transitions to a new state (st+1) with a given probability (P).
- Agent receives a reward (rt) as feedback.



DRAS: HPC Scheduling Agent



DRAS

- DRAS: automated cluster scheduling leveraging reinforcement learning techniques.
- kj



DRAS reward, action

- Reward: Capability computing.
- Two types of Capability computing:

- Type 1: balance 3 factors (prevent job starvation, promote capability jobs, improve 
system utilization).

- Type 2: minimize average job wait time

- Action: rather than select multiple jobs at a time, leading to explosive number of actions, 
DRAS selects one job at a time to prevent explosive number of actions.



DRAS agent 
- Goal: prevent job starvation and minimize resource waste.
- The decision making of DRAS is to select jobs and execute them in three modes: ready 

job, reserved job, backfilled job.
- Using hierarchical neural network structure with 2 levels to identify each mode:

- Level-1 network (prevent job starvation): select ready jobs and reserved jobs 
- Level-2 network (minimize resource waste): identify backfilled job

- Execution: 
- Level1: Scheduler enforces window at the front of the job wait queue and provide higher 

priorities to older jobs → less starvation problems
- If nodes >= job size: mark job as ready
- If nodes < job size: mark job as reserved 
- Level2: select jobs that can fill in holes before reserved time



4 DRAS agent learning methods: 

- 2 main approaches: maximize Q-learning (predict the reward of a certain action taken 
in a certain state) and policy gradient (directly predict the action itself)

- 4 DRAS agents using 4 reinforcement learning algorithms
1. DRAS-DQL: maximize Q-value
2. DRAS-PG: maximize policy gradient 
3. DRAS-A2C: reduce baseline variance in policy gradient method
4. DRAS-PPO: address problem of large improvement steps on a policy might 

accidentally cause performance collapse
- Training: 

- Train agent with 3 types of jobsets: (1) a set of sampled jobs randomly selected 
from real job traces, (2) a period of real job traces, and (3) a set of synthetic jobs 
generated according to job patterns on the target system.

- Stop training process once the performance stops significantly increasing.



CQGym



CQGym

A platform to comprehensively evaluate different HPC scheduling policies under the same setting.

CQGym consists of three main components:

● Scheduling environment
○ an event-driven scheduling simulator that simulates job events
○ Ex: job submission, start, and end,...

● Gym interface
● Scheduling agent

○ Processes scheduling requests from the environment.

The scheduling environment and agent are running on two separate threads. 

Gym provides a standard interface to bridge the environment and agent enabling their communication and 
coordination.



CQGym

simulates the actual 
scheduling environment.

provides a standard 
interface between 
scheduling environment 
and scheduling agent.

makes scheduling 
decisions.



Experimental Setup



Comparison Methods

● FCFS/B:
○ Represents FCFS with EASY backfilling.
○ Prioritizes jobs based on their arrival times.

● BinPacking:
○ Iteratively allocates the largest runnable jobs (until the system cannot accommodate any 

further jobs).
● Random:

○ Randomly selects runnable jobs (until no more jobs can fit into the system).
● Optimization:

○ A suite of scheduling methods that formulate cluster scheduling as an optimization problem
● Decima-PG:

○ Modify Decima by skipping the graph neural network and adopting our state representation
● DRAS:

○ Our HPC custom designs scheduling



Note!!:

● FCFS/B and DRAS are equipped with reservation and backfilling strategies.
● Optimization does not have backfilling and reservation capability.



Workload Traces

Two-year job log from Theta

Capability computing focusing on solving largesized 
problems.

Setup:

● The system size to be 4,360 and filter 
out all debugging jobs in the trace

● First 2-month data for training, the 
next month data for validating model 
convergence, and the rest 21-month 
data for testing.

Four-month job log from Cori

Capacity computing solving a mix of small-sized 
and large-sized problems.

Setup:

● the first 2-week data for training, the 
next 1-week data for validating 
model convergence, and the last 
15-week data for testing.



DRAS Training

Reward function:

Set the weights w1 = w2 = w3 = 1/3.

Reward function:

The learning rate α is set to 0.001.



DRAS Training

Validate the trained DRAS agent with an unseen validation dataset → 2 key observations:

● Training only with real jobsets 
○ cannot obtain a converged model.
○ more jobsets are needed to train our agents.

● Training order plays an important role in performance
○ Training in the order of sampled, real and synthetic jobsets achieves the best result
○ Training with real jobsets first can also obtain a converged model, the performance is not as 

good as the case of training with sampled jobsets first.
○ Training with synthetic jobsets first results in slow convergence.



Summary

In order to generate a converged and 
high-quality model, DRAS needs to first 
learn from simple averaged cases 
(sampled jobsets) and then gradually 
move to more complicated special cases 
(real and synthetic jobsets).





Evaluation Metric

● Job wait time
○ Measures the interval between job submission to job start time

● Job response time
○ Measures the interval between job submission to completion.

● Job slowdown
○ Measures the ratio of the job response time to its actual runtime.

● System utilization
○ Measures the ratio of the used node-hours for useful job execution to the total elapsed 

node-hours.



Case Study/Results



Scheduling performance
- DRAS outperforms traditional scheduling methods in both Theta and Cori 
- FCFS/B has lowest maximum wait time but poor performance on the rest of metrics

- kjmk



Job Starvation Analysis
- DRAS do all jobs, while traditional scheduling methods just do small-sized jobs 

(green) → DRAS can prevent job starvation



Source of DRAS performance gain
- Traditional methods: just have ready jobs, consuming all time, suffer from job 

starvation
- DRAS: most jobs are executed in backfilling, consume least time. Reserved has least 

jobs but consume most time → learn to prioritize jobs and prevent job starvation 
through 2 level network design → maximize long-term scheduling performance

- DRAS takes advantage of incorporating backfilling


