
HammingMesh: A Network Topology
for Large-Scale Deep Learning

Motivation
● Data-driven programming or software 2.0, is limited by the

capability of machines to perform the compute and data-intensive
training jobs

● Limited by data movement
● Memory and network bandwidth are expensive
● Today’s HPC networks, optimized for full global (bisection)

bandwidth, are inefficient for deep learning workloads

What is a HammingMesh

● A flexible topology that adjusts the ratio
of local and global bandwidth for deep
learning workloads

● Combines ideas from torus and global-bandwidth topologies (e.g., fat tree) to enable a
flexibility-cost trade off

● HammingMesh topology
○ uses technology-optimized local (e.g., PCB board) and global (optical, switched) connectivity
○ utilizes limited packet forwarding capabilities in the network endpoints to achieve lower cost

and higher flexibility
○ enables full-bandwidth embedding of virtual topologies with deep learning traffic

characteristics
○ supports flexible job allocation even with failed nodes
○ enables flexible configuration of oversubscription factors to adjust global bandwidth

Communication in Distributed Deep Learning
● Deep learning training with Stochastic Gradient Descent

○ The forward pass evaluates the network function f(x)
on a set of M examples

○ The backward pass of SGD computes the average loss
L and propagates the errors e backward through the
network to adapt the parameters P

○ This training process proceeds through multiple
(computationally identical) iterations until the model
achieves the desired accuracy

● Parallelism and data distribution can fundamentally be
arranged along three axes: data parallelism, pipeline
parallelism, and operator parallelism.

HammingMesh Structure

● Combines local short copper cables with global long fiber cables
● Local groups are formed by local inexpensive high-bandwidth 2D mesh

○ uses short metal traces on PCB boards
● Combines sparsely connected boards in a dimension-wise fully-connected

topology
● Boards are connected to a 2D Hamming graph
● Accelerator ports are arranged in planes with 4 directions each

Using HammingMesh in Practice

● Allocating Jobs on HammingMesh
○ 1) Identify all available indexes in each row, resulting in y sets of at most x indexes
○ 2) Set S (“selected”) to the first row with at least v indexes
○ 3) Add another row whose intersection with all rows in S has at least v indexes to S
○ 4) Repeat the last step until S contains u rows, fail if no such set exists

● Experimental Workloads
○ simulate how well a representative job mix that completely fills a full global bandwidth

topology

Random Failures in HammingMesh

● Allocation algorithm achieves a median utilization of working boards higher
than 70%

● 40 failed boards achieve median utilization of 62% of the small Hx4Mesh
● All meshes with fewer boards are more affected by random failures
● Allocating the jobs in random arrival order decreases he utilization by at most

10% on large networks

Thank You

