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Scalable Networks-on-chip (NoCs)

e Customization can lead to diverse design goals of different chips

e Develop atoolchain that can deliver fast and accurate cost and performance
predictions

e Sparse Hamming graph

e Four fundamental NoC topology design principles
o Low cost
m Low radix topologies
m Design for link routability
o High performance
m  Minimize the network diameter
m  Minimize the physical path length




Design Principles

e Assume a chip is organized as an R xC grid of identical building blocks (tiles)
o Contains one or more endpoints and a local router where all endpoints are connected

e NoC is used to provide connectivity between tiles

e NoC's links are attached to the tile's local routers

e Ifalinkistoolongto be operated at target frequency, insert as many registers
as necessary to meet the frequency

e Tiles occupy all available metal layers which disallows routing an inter-tile link
between two tiles A and B over a third tile C




Reduce Cost

e Use low-radix topologies

o Areais 4 times the router radix

o A higher radix implies a higher overall number of links
e Design for routability

o Short links

o Aligned Links

o  Uniform Link Density

o Optimized Port Placement




Boost Performance

e Minimize the network diameter
o Diameter = max number of routers-to-router hops that a flit takes on the path from its
source-tile to its destination tile
o Flit traversing a router lead to a delay
m  Minimizing the network diameter reduces latency
o Congestion also gets reduced

e Minimize the Physical Path Length
o Minimizing the physical distance that a flit travels is crucial to achieve low latency
o Needs paths that provide minimal physical distance
m Contain links that provide physically minimal paths
m Be co-designed with the routing algorithm to use these paths without reducing the
throughput




The Sparse Hamming Graph NoC Topology: Concept

e Customizable sparse Hamming graph topology
o Based on four Noc topology design principles
m Provides low router radix
m Design for routability
m Resultin low latency
m Unfortunately has a high network diameter
e Add additional links to the topology
e Depends on the two input parameters - enable an effortless adjustment of its cost
performance trade off
o The way links are added ensures a good routability of links is maintained
o  Flattened butterfly (low network diameter and excellent performance)




Overview of Prediction Toolchain
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Fig. 3: Toolchain to predict performance and cost metrics of a NoC.



Prediction Model
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Fig. 4: Our model to predict area overhead, power consumption, and
link latencies of a NoC.



TABLE II: Architectural Parameters Needed as Model Inputs.

Parameters describing the chip design
Number of tiles
Combined area of all endpoints (cores + local
memories) in a tile in gate equivalent (GE)
Aspect ratio of a tile (height:width)
Parameters describing the NoC
Frequency at which the NoC is run
Bandwidth of each router-to-router link
Parameters describing the technology node
Function; area (in mm) needed to
FGE - mm? (=) synthesize x GE of logic.
f H (@) Function; space (in mm) needed to
wires — mm manufacture x parallel, horizontal wires.

Function; space (in mm) needed to
1% () b

wires — mm manufacture x parallel, vertical wires.

() Function; approximate power consumption
% (in W) of z mm? of logic-dominated area. .
e Function; approximate power consumption
fmm2 — w(x) (in W) of z mm? of wire-dominated area. A rC h Ite C-t u ra |
Function; time (in s) it takes a signal to
From — 5 () travel a distance of x mm along a buffered wire.

Parameters describing the on-chip transport protocol
Function; number of wires needed to build a ra I I l e e rS
fbw — wires (1)

o,

mm* — W

a link with a bandwidth of x bits/cycle
Function; area (in GE) of a NoC router with

far(m,s, B) m manager ports, s subordinate ports and bandwidth B




Model Construction
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Fig. 5: The five steps in our model for predictions of area, power consumption, and link latencies.




Toolchain Evaluation

TABLE III: Cost and Performance results and predictions of the
MemPool Architecture [37].

Metric Correct Value Prediction Prediction Error
Area 21.16 mm? 24.26 mm? 15%
Power 1.556 W 1.447 W 7%
Latency 5 cycles 10 cycles 100%

Throughput 38% 25% 34%




NoC Topology
Customization
Strategy

Step 1: Start with the simplest sparse
Hamming graph topology, which is a mesh
(Se= {1 S=11).

Step 2: Use prediction toolchain to estimate
performance of and cost of current
topology if applied to the target architecture
with its unique architecture parameters.
Step 3: Compare the estimates from step 2
to design goals to identify insufficiencies of
current topology.

Step 4: Follow design principles to change
the parameters S, and S, to eliminate the
insufficiencies identified in step 3.

Step 5: Go back to step 2 and repeat until
finding the satisfied performance and cost.




Target Architectures & Evaluation Results
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(c) 128 tiles with 35SMGE and 1 core each. Parameters for sparse (d) 128 tiles with 70MGE and 2 cores each. Parameters for sparse
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Fig. 6: Comparison of various topologies for four different scenarios. The comparison is performed using our prediction toolchain with a
random uniform traffic pattern and a routing algorithm that minimizes the number of router-to-router hops. SlimNoC is only applicable for
scenarios c) and d) because it requires the number of tiles N7 to be N7 = 2p?® for a prime power p.




Contributions

1) A set of NoC topology design principles that reveal how to influence the NoC's
cost and performance

2) The customizable sparse Hamming graph topology with and adjustable
cost-performance trade-off

3) A fast and easy-to-use toolchain for predicting the NoC's performance and
cost featuring our custom model for area power and link latency estimates
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