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Introduction

- Problem: scaling parallel application increases communication latencies on
performance
- Solution to lower latency: a topology of switches that has low diameter and

low average shortest path length
— Random shortcut topology can do this

- Random shortcuts: add random edges in network topologies for HPC systems



Related work

e Distributed Loop Networks (DLN)



Random Shortcut Topology

- Reduces both diameter and average shortest path length, compared with
non-random topologies with the same degree

- Achieve comparable throughput and have lower latency compared to
non-random topologies (hypercubes, tori)

- Lead to robustness to random edge removals due to a small-world effect

- Good way to generate: add random shortcuts to simplest base topology (ring)

using a simple uniform distribution



Scalability

- Difference between non-random

topologies and DLN-2-y is positive
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Figure 4. Diameter increase over DLN-2-y when using non-random topolo-
gies, where y is chosen so that comparisons are between topologies of the
same degree, vs. V.




Scalability

DLN-2-y also has advantage for
average shortest path length
when the topology gets larger
Lower diameter leads to lower
end-to-end path length

— latencies between

pairs are uniform — better for

task allocation
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Figure 5. Average shortest path length increase over DLN-2-y when using

non-random topologies, where y is chosen so that comparisons are between
topologies of the same degree, vs. N.



Fault Tolerance
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Figure 6. Fault tolerance vs. degree (N = 2'? vertices).






Discussion Of Limitations

e (Case Study: Random Shortcut Links on Myrinet-Clos
o  Well distributed paths , ' — ' .
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Figure 26. Latency vs. accepted traffic for random shortcut patterns on
Myrinet Clos (80 switches, 256 hosts).



Discussion Of Limitations

e Routing Scalability
o No Scheme — does not have a simple structure.
o The scale of random shortcut topologies can be limited by routing table size at eachs witch.

e Physical Cable Length and Maintainability



