
Presentation on “Processor Allocation on 
Cplant: Achieving General Processor 

Locality Using One-Dimensional Allocation 
Strategies” by Leung et al. (leung02a)

David Bunde
9/18/23



Contributions

• Evidence that processor allocation matters

• Improved processor allocation scheme for CPlant based on a space-
filling curve

• Sum of pairwise distances as a metric for processor allocation



Processor allocation: Where to run

• Which unused (white) processors should system give a 5 node job?



What is a good allocation?

Good allocation Bad allocation



How much does it matter?

runs twice 
as fast as



Step 1: Put processors in a good linear order

Hilbert space-filling curve



Step 2: Choose nearby processors in the order

To allocate processors for a single job:
• Free list: assign first processors
• First fit: assign from first interval of free processors (or processors 

that minimize the range of processors used)
• Best fit: assign from smallest interval of free processors that is big 

enough (or minimize range)
• Sum of squares: assign from interval that leaves best variety of 

remaining intervals (or minimize range)



Better allocation 
reduces running time

Allocation Average Standard
Strategy Makespan Deviation
Free List (no curve) 5:46:31 0:10:10
Best Fit (no curve) 5:27:58 0:05:48
Free List (Hilbert) 4:58:52 0:07:37
Sum of Squares (Hilbert) 4:32:09 0:03:16
First Fit (Hilbert) 4:30:22 0:06:09
Best Fit (Hilbert) 4:25:23 0:03:00

Table 1. Effect of allocation policy on the
makespan of the test stream

repeated a hundred times in each suite. The suite computes
a variety of statistics, whose computation consumes a small
fraction of the total running time. Because locality is most
important for jobs with high communication demand, this
test suite represents a best-case scenario for the benefits of
allocation improvements.
Our test job stream had 91 jobs of size 2, 33 jobs of

size 5, 31 jobs of size 25, and 33 jobs of size 30. This
gives a small range of “large” (approximately or of
the machine) and small jobs. The stream starts with some
large jobs to fill up the machine. Small jobs are interspersed
among the large ones to cause fragmentation. The last job
submitted is small, but it always finishes in front of the last
large job. The machine is busy through the release of the
last job.
Running times on the Cplant system are nondeterminis-

tic. If we run the same job stream twice with the same al-
location algorithm, same job ordering, same release times,
starting from an empty machine, and having dedicated pro-
cessors, the running times are not the same. Cplant has in-
herent nondeterminism in the network. There is variabil-
ity in time to load executables, in message delivery times,
and so on. If the completion time of a single job changes,
the options available for the allocation of subsequent jobs
also changes. This effect propagates so that later jobs can
be allocated significantly better or worse than in a previ-
ous run. We even see different job execution orderings,
when a job that is held up for insufficient free processors
in one run finds enough free processors in a different run.
We found that this nondeterminism did not significantly af-
fect the makespan of the job stream,2 but the running times
of individual job types did vary by 4-16%.
We ran the job stream two to five times (an average of

four) for each of the following strategies: First Fit and Sum
of Squares with the Hilbert curve, and Free List and Best
Fit with and without the curve.
Table 1 shows the effect of the allocation algorithm on
2The makespan of a set of jobs is the time between the start of the fi rst

job and the completion of the last job.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 20 40 60 80 100 120 140 160 180 200

W
ai

tin
g 

Ti
m

e 
(s

ec
on

ds
)

Job Number

Baseline
Free List

Sum of Squares
First Fit
Best Fit

Figure 2. The x-axis shows order of job re-
lease. The y-axis shows waiting time. The
baseline points use the default processor or-
dering. All other runs are for the indicated
algorithm with the Hilbert curve. Jobs of size
2, 5, and 25 are not represented since these
would all be near the line .

the makespan of the job stream. For this particular job
stream, it is better to use a space-filling curve than the row-
based ordering. It is also better to pack a job into a consec-
utive interval if possible. However, the performance of the
various bin-packing-based allocation strategies were largely
indistinguishable.
Figure 2 shows the waiting times of the 30 node jobs

as a function of their order in the job stream. Recall the
job stream is identical for all runs, so job order is identical
across runs. Wait time measures the amount of time a job
sits in a queue waiting for a sufficient number of free pro-
cessors. This plot does not include the -node, -node, and
-node jobs. Their wait time was so insignificant com-

pared to that of the -node jobs that they all sit near the
axis. This figure shows that waiting time is yet another

metric that orders the methods the same way with substan-
tial separation.
Figure 3 examines job completion time as a function of

two job-fragmentation metrics, one inherent to the topol-
ogy of the job placement and one used by the algorithms.

Figure shows large jobs of a trace ordered 
by submission time (=job number)



Best metric: Sum of 
pairwise distances

800

1000

1200

1400

1600

1800

2000

2200

3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4

C
om

pl
et

io
n 

Ti
m

e 
(s

ec
on

ds
)

Average Number of Hops

800

1000

1200

1400

1600

1800

2000

2200

30 40 50 60 70 80 90 100

C
om

pl
et

io
n 

Ti
m

e 
(s

ec
on

ds
)

Span

Figure 3. Top: (a) Completion time as a func-
tion of the average number of communication
hops between processors. Bottom: (b) Com-
pletion time as a function of span. Compar-
ison of fragmentation metrics. These plots
include only 30-processor jobs across all al-
location algorithms. (a) includes all proces-
sor orderings. (b) is for Hilbert curve only.

A natural geometric fragmentation metric is the average of
the number of communication hops between processors al-
located to a job. Figure 3(a) plots job completion time as a
function of this average for the 30-node jobs. Figure 3(b)
is a similar plot for span with the Hilbert curve. We do not
include the 2-node, 5-node, and 25-node jobs in these plots.
The 2-node, 5-node, and 25-node jobs differ enough from
the 30-node jobs to add noise to the plots. When the 2-
node, 5-node, and 25-node jobs are plotted by themselves,
they show the same weak correlation on a different scale
and with a different slope. These plots include all 30-node
jobs placed with all algorithms since the effect of fragmen-
tation should be a function of the amount of fragmentation
and independent of how that placement decision was made.
We observe a weak correlation for both metrics. As ex-

pected, there is a stronger correlation of completion time to
the average number of communication hops because this is
a closer match to the topology of the job placement. We
are encouraged that the general span metric, which can be
easily computed, still tracks this correlation, albeit more
weakly. We do not show the similar plot for bounding
box perimeter that gives an intermediate strength correla-
tion. None of these metrics captures the full environment in
which a job is run.

5 Concluding Remarks and Future Work

We are cautiously optimistic that the simple, general al-
location methods discussed in this paper will improve the
performance of Cplant systems and apply to more general
systems. Our experiments support the use of span as a frag-
mentation metric for the design of algorithms and as a mea-
sure of locality. Jobs with large span do generally take
longer. However, the relationship between span and com-
pletion time is not very tight. More work is needed to deter-
mine how much of this variability is inherent in the problem
and how much results from the imprecision of using span.
We also think that finding the minimum span for a given

machine and set of jobs is an interesting theoretical prob-
lem. It is related to, yet distinct from, well-studied prob-
lems such as memory allocation and bin packing. We have
a simple reduction to show that finding the exact minimum
span is NP-hard, but do not yet know if it is approximable.
We have also studied these problems in the online set-

ting, where the standard (worse-case) model is competitive
analysis [49]. While we omit the proof here, we have been
able to show that no online algorithm for minimizing maxi-
mum span can achieve a competitive ratio better than
even for randomized strategies.
We intend to evaluate non-greedy allocation methods for

jobs that cannot be allocated a contiguous interval. In par-
ticular, Sum-of-Squares-like algorithms are more likely to
leave flexibility in the allocation options for future jobs. On

Also looked at: (sum/max/etc)
• Span in linear order
• Span / Job size
• Size of bounding box (3D)
• Sum of bounding box dimensions
• Number of connected components

(But didn’t run statistical tests…)


