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Introduction

e Deep Learning (DL) models have seen significant growth in terms of both the

number of parameters and training datasets

o ChatGPT by OpenAl has reached 175 billion parameters and trained on a dataset of many

terabytes

e Heavily rely on GPUs with high computing intensity



Problem

e Training these large-scale models requires high computational power,
primarily relying on GPUs with high computing intensity

o Mainstream GPUs have limited on-chip memory capacity, making training on large-scale

models expensive and challenging

e Efforts have been made to reduce GPU memory requirements

o Utilize CPU memory and computing resources, such as heterogeneous DL training

o DeepSpeed's ZeRO-Offload is a recent solution



Proposed Solution: CoTrain

e Runtime scheduling framework for training DL models
o  Maximizes GPU utilization while offloading specific tasks to the CPU

e Modules: Initialization, Training Engine, Task Scheduler, and Data Allocator,
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Figure 4: System architecture of CoTrain.




CoTrain Continued

e Integrated with PyTorch (built on top of)

o Open-source machine learning framework that provides a flexible and dynamic platform for

developing and training deep learning models



Important Vocabulary

e Gradient - magnitude of the changes that need to be made to the model's
parameters during the training process to minimize the loss function

e Loss Function: A function used to measure the error or discrepancy between model
predictions and actual target values.

e "k" - decides the allocation of parameter-update tasks, with the first "k" layers
assigned to the GPU and the rest to the CPU.



Initialization

e Initializes the deep learning model by analyzing and registering all layer-level
tasks

e Create task Directed Acyclic Graph (DAG)

e Define unique Layer IDs (LIDs) for each layer to manage data positions in
CPU memory

e Recording parameters' computational complexity



Training Engine

e [Executes the entire deep learning model training process

o the forward and backward stages, as well as parameter updates

e Schedules and controls the tasks for each training layer, and managing the
asynchronous offloading and synchronization of data between the GPU and

CPU memory



Forward
Backward
PARAM-UPDATE
Separation

Data Copy

Data Move

Algorithm 1 CoTrain

Training Engine:
1: function FORWARD()
2: for layerl = 0,...,ndo
3. index « Dict.find(w!*K) LID)
4 call DATA COPY (index, w!!*K))
5:  activationa®) « " l(a”’”. W

lll)

release w'l)

7: end for
: end function
: function BACKWARD( )
: for layerl = n,..,0do
index « Dict.find(wI=F) LID)
call DATA COPY (index, w(!=%))
gradient g) ¥, ] at (g, wib)
release w(!)
indexy « Dict_Grad.find(w') .LID)
call DATA MOVE (index,, g'"))
: end for
: end function
: function PARAM-UPDATE()
20: for layer!l = n,...,0do
if w(*1) device = CPU then
inCPU : wl*) — () _ ,](gll) +9Q(wh)y)
else if w(/*1) device = GPU then
inGPU : w*) — w) — p(gD + 9Q(wh))
mem — addr « Dict.find(w'") LID)
call DATA COPY (index, w'!) .data)
end if
: end for
: end function
Task Scheduler:

1: function SEPARATION(timegw p, timeyppATE)
timegwp + timeyppATE
2timeypPDATE

3: task graph : tg « scheduler (k)

4: end function

Data Allocator:

1: function DATA COPY(src, tgt)
tgt.data «— tgt.empty_tensor(src.size, tgt.device)
tgt.data « src.copy(src.data)

4: end function

5: function DATA MOVE(src, tgt)
src.data « src.data.pin_memory()
src.data « src.data.to(tgt.device)

: end function

2: separationdistance k «—




Task Scheduler

e Partitions and schedules tasks during the training process

e Ensures that tasks are allocated to the appropriate computing resources



Data Allocator

e Efficiently manages the migration of data between GPU memory and CPU
memory

e Ensures that data transfer tasks are executed asynchronously



Dataflow of Cotrain - GPU CPU Communication

GPU sends Layer ID of n-1 to GPU

Layer ID converted to CPU Memory Address
Data Allocator sends n-1 params to GPU
GPU sends n+1 params to Data Allocator e
Data Allocator sends n+1 params i |
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Figure 5: Dataflow of CoTrain




Dataflow of CoTrain - CPU GPU Computations

Meanwhile, locally...

GPU:

i GPU Core
©

A. Output gradient of n+1 loaded
B. Parameters of n loaded
C. Compute backward gradient

CPU:

Data

A. Gradient received from GPU loaded MO
B. Parameters of n+1 loaded | '
C. Run Param Update Stage Figure 5: Dataflow of CoTrain




Parallelization: Requirements and Challenges

e Backward requires 3 things

o Data is independent
o ‘.. the training stage is separable...’
o Resources are available

e Parallelization may break requirement 1



Solution to Parallelization Problems

GPU creates gradients for CPU

CPU uses a priority queue for gradients
CPU waits until gradients enter queue
Uses cuda.stream() for communication



Cause for Concern

e GPU and CPU wait on each other
e Reusable computations lost
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i F: Forward
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U: Param-Update

1 G: Gradient

P: Parameter




Workaround

e Computations are saved when possible



Structure of CoTrain

e Contains 3 Threads
o Training
o Transfer
o Param-Update



Evaluation: CPU, GPU, etc.

Device Type
GPU NVIDIA TITAN RTX
GPU Mem 24GB HBM2

CPU Intel Xeon CPU E5-2683(14-core,2.00GHz)
CPU cache L1-32K, L2-3.5M, L3-35M

CPU Mem  128GB 2133MHz DDR4

PCle PClIe 3.0




More Specifications

e Used with ChatGPT and Bert
e Used Stanford Question Answering Dataset
e Compared to PyTorch and DeepSpeed



Figure 7: Training Throughput
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Figure 8: Throughput of PyTorch, DeepSpeed and Cotrain in Various
Batch Sizes
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Figure 9: The Max Model Size for Different Batch Size
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Figure 10: Model Convergence
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Figure 11: The Idle Time in the Whole Step Time
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