CoTrain: Efficient Scheduling for Large-Model Training upon
GPU and CPU in Parallel

Presented by: Saverio Scumaci and Carlos Venegas

Introduction

e Deep Learning (DL) models have seen significant growth in terms of both the

number of parameters and training datasets

o ChatGPT by OpenAl has reached 175 billion parameters and trained on a dataset of many

terabytes

e Heavily rely on GPUs with high computing intensity

Problem

e Training these large-scale models requires high computational power,
primarily relying on GPUs with high computing intensity

o Mainstream GPUs have limited on-chip memory capacity, making training on large-scale

models expensive and challenging

e Efforts have been made to reduce GPU memory requirements

o Utilize CPU memory and computing resources, such as heterogeneous DL training

o DeepSpeed's ZeRO-Offload is a recent solution

Proposed Solution: CoTrain

e Runtime scheduling framework for training DL models
o Maximizes GPU utilization while offloading specific tasks to the CPU

e Modules: Initialization, Training Engine, Task Scheduler, and Data Allocator,

Data Set DNN Model
@ load model

Initialization
@ send task-DAG

Task Scheduler

CoTrain

:
® send migr. cmd ® send task-graph | 5

Data Allocator Training Engine

®

‘migrate data

I
=
=
z
2
=
=
==

Figure 4: System architecture of CoTrain.

CoTrain Continued

e Integrated with PyTorch (built on top of)

o Open-source machine learning framework that provides a flexible and dynamic platform for

developing and training deep learning models

Important Vocabulary

e Gradient - magnitude of the changes that need to be made to the model's
parameters during the training process to minimize the loss function

e Loss Function: A function used to measure the error or discrepancy between model
predictions and actual target values.

e "k" - decides the allocation of parameter-update tasks, with the first "k" layers
assigned to the GPU and the rest to the CPU.

Initialization

e Initializes the deep learning model by analyzing and registering all layer-level
tasks

e Create task Directed Acyclic Graph (DAG)

e Define unique Layer IDs (LIDs) for each layer to manage data positions in
CPU memory

e Recording parameters' computational complexity

Training Engine

e [Executes the entire deep learning model training process

o the forward and backward stages, as well as parameter updates

e Schedules and controls the tasks for each training layer, and managing the
asynchronous offloading and synchronization of data between the GPU and

CPU memory

Forward
Backward
PARAM-UPDATE
Separation

Data Copy

Data Move

Algorithm 1 CoTrain

Training Engine:
1: function FORWARD()
2: for layerl = 0,...,ndo
3. index « Dict.find(w!*K) LID)
4 call DATA COPY (index, w!!*K))
5: activationa®) « " l(a”’”. W

lll)

release w'l)

7: end for
: end function
: function BACKWARD()
: for layerl = n,..,0do
index « Dict.find(wI=F) LID)
call DATA COPY (index, w(!=%))
gradient g) ¥,] at (g, wib)
release w(!)
indexy « Dict_Grad.find(w') .LID)
call DATA MOVE (index,, g'"))
: end for
: end function
: function PARAM-UPDATE()
20: for layer!l = n,...,0do
if w(*1) device = CPU then
inCPU : wl*) — () _ ,](gll) +9Q(wh)y)
else if w(/*1) device = GPU then
inGPU : w*) — w) — p(gD + 9Q(wh))
mem — addr « Dict.find(w'") LID)
call DATA COPY (index, w'!) .data)
end if
: end for
: end function
Task Scheduler:

1: function SEPARATION(timegw p, timeyppATE)
timegwp + timeyppATE
2timeypPDATE

3: task graph : tg « scheduler (k)

4: end function

Data Allocator:

1: function DATA COPY(src, tgt)
tgt.data «— tgt.empty_tensor(src.size, tgt.device)
tgt.data « src.copy(src.data)

4: end function

5: function DATA MOVE(src, tgt)
src.data « src.data.pin_memory()
src.data « src.data.to(tgt.device)

: end function

2: separationdistance k «—

Task Scheduler

e Partitions and schedules tasks during the training process

e Ensures that tasks are allocated to the appropriate computing resources

Data Allocator

e Efficiently manages the migration of data between GPU memory and CPU
memory

e Ensures that data transfer tasks are executed asynchronously

Dataflow of Cotrain - GPU CPU Communication

GPU sends Layer ID of n-1 to GPU

Layer ID converted to CPU Memory Address
Data Allocator sends n-1 params to GPU
GPU sends n+1 params to Data Allocator e
Data Allocator sends n+1 params i |

ok owbd=

Figure 5: Dataflow of CoTrain

Dataflow of CoTrain - CPU GPU Computations

Meanwhile, locally...

GPU:

i GPU Core
©

A. Output gradient of n+1 loaded
B. Parameters of n loaded
C. Compute backward gradient

CPU:

Data

A. Gradient received from GPU loaded MO
B. Parameters of n+1 loaded | '
C. Run Param Update Stage Figure 5: Dataflow of CoTrain

Parallelization: Requirements and Challenges

e Backward requires 3 things

o Data is independent
o ‘.. the training stage is separable...’
o Resources are available

e Parallelization may break requirement 1

Solution to Parallelization Problems

GPU creates gradients for CPU

CPU uses a priority queue for gradients
CPU waits until gradients enter queue
Uses cuda.stream() for communication

Cause for Concern

e GPU and CPU wait on each other
e Reusable computations lost

GPU-CPU
transmission

&
i
i
i
i
i
i
i
1.
P
i
i
i
i

i

i

i
-
-
i

i

i

i

i

i

i

compute

time

i F: Forward

i B: Backward

U: Param-Update

1 G: Gradient

P: Parameter

Workaround

e Computations are saved when possible

Structure of CoTrain

e Contains 3 Threads
o Training
o Transfer
o Param-Update

Evaluation: CPU, GPU, etc.

Device Type
GPU NVIDIA TITAN RTX
GPU Mem 24GB HBM2

CPU Intel Xeon CPU E5-2683(14-core,2.00GHz)
CPU cache L1-32K, L2-3.5M, L3-35M

CPU Mem 128GB 2133MHz DDR4

PCle PClIe 3.0

More Specifications

e Used with ChatGPT and Bert
e Used Stanford Question Answering Dataset
e Compared to PyTorch and DeepSpeed

Figure 7: Training Throughput

>N
(=]
*N
=]

PyTorch PyTorch
7 DeepSpeed

S CoTrain

7 DeepSpeed

wu
(=
wu
(=

= CoTrain

=
o
i
S

[\~
(=)
oo
(=

. o
N w
¥ <9
®) Q
s =
— LL(
- =
S N
=3 = 30
= B
= =
20 o0
— -
o (]
— b
s 2
= =

—
o

—

<

"01B 03B 1B 2B 4B 8B ° 0B 03B 1B 2B 4B 8B
Model Size(billion parameters) Model Size(billion parameters)
(a) GPT (b) Bert

Figure 8: Throughput of PyTorch, DeepSpeed and Cotrain in Various
Batch Sizes

1 PyTorch 55N PyTorch
DeepSpeed s N\ ‘ | DeepSpeed
} CoTrain N : N

W
o

3]
(=
S

—~
wn
fa ¥
Q
—_
Pt
—
—
—
=
jon
=
o0
=
o
—
=
!

Throughput (TFLOPS)

—
o

—_—

o

BN
i
¥
£

* N A N7\ o A NI
2 BS4 BS 8 BS 16BS 32BS 50 " BS2 BS4 BS8BS 16BS*
Batch Size Batch Size
(a) GPT (b) Bert

Figure 9: The Max Model Size for Different Batch Size

PyTorch
DeepSpeed
i CoTrain

PyTorch
DeepSpeed
i CoTrain

oy
Do
—
[\

b
S
—
(o=}

oo

Model Size(billion parameters)

—~~
n
2
3}
=
)
g
©
b
[3+]
(=W
=
@]
2
= 0
o
S
7]
N
gx
N
B
[}
o
8
=

NN 777 NN N MNZZZ4N INNYZZZANN . NN

BS4 BS8 BS16 ““BS2 BS4 BS8 BS16
Batch Size Batch Size

(a) GPT (b) Bert

Figure 10: Model Convergence

DeepSpeed loss
PyTorch loss
CoTrain loss

(e}

(o0}

~

(@)}

(9]
2]
o]
-
(o)}
2
=
0
=

(9

S

w

20000 40000 60000 80000 100000 120000 140000
Step

Figure 11: The Idle Time in the Whole Step Time

. Idle time Percentage %%
Step time

Q.
Q
]
(2]
o
]
Q
=
Y—
o
[
(@)
©
]
C
[}
O
ot
[
o

!| V. I“" 3 : ; | 1 777. "\'\

1000 2000 3000 4000 5000 6000 7000 8000 b
Step

