
CoTrain: Efficient Scheduling for Large-Model Training upon
GPU and CPU in Parallel

Presented by: Saverio Scumaci and Carlos Venegas

Introduction

● Deep Learning (DL) models have seen significant growth in terms of both the

number of parameters and training datasets
○ ChatGPT by OpenAI has reached 175 billion parameters and trained on a dataset of many

terabytes

● Heavily rely on GPUs with high computing intensity

Problem

● Training these large-scale models requires high computational power,

primarily relying on GPUs with high computing intensity
○ Mainstream GPUs have limited on-chip memory capacity, making training on large-scale

models expensive and challenging

● Efforts have been made to reduce GPU memory requirements
○ Utilize CPU memory and computing resources, such as heterogeneous DL training

○ DeepSpeed's ZeRO-Offload is a recent solution

Proposed Solution: CoTrain

● Runtime scheduling framework for training DL models
○ Maximizes GPU utilization while offloading specific tasks to the CPU

● Modules: Initialization, Training Engine, Task Scheduler, and Data Allocator,

CoTrain Continued

● Integrated with PyTorch (built on top of)
○ Open-source machine learning framework that provides a flexible and dynamic platform for

developing and training deep learning models

Important Vocabulary

● Gradient - magnitude of the changes that need to be made to the model's
parameters during the training process to minimize the loss function

● Loss Function: A function used to measure the error or discrepancy between model
predictions and actual target values.

● "k" - decides the allocation of parameter-update tasks, with the first "k" layers
assigned to the GPU and the rest to the CPU.

Initialization

● Initializes the deep learning model by analyzing and registering all layer-level

tasks

● Create task Directed Acyclic Graph (DAG)

● Define unique Layer IDs (LIDs) for each layer to manage data positions in

CPU memory

● Recording parameters' computational complexity

Training Engine

● Executes the entire deep learning model training process
○ the forward and backward stages, as well as parameter updates

● Schedules and controls the tasks for each training layer, and managing the

asynchronous offloading and synchronization of data between the GPU and

CPU memory

● Forward

● Backward

● PARAM-UPDATE

● Separation

● Data Copy

● Data Move

Task Scheduler

● Partitions and schedules tasks during the training process

● Ensures that tasks are allocated to the appropriate computing resources

Data Allocator

● Efficiently manages the migration of data between GPU memory and CPU

memory

● Ensures that data transfer tasks are executed asynchronously

Dataflow of Cotrain - GPU CPU Communication

1. GPU sends Layer ID of n-1 to GPU
2. Layer ID converted to CPU Memory Address
3. Data Allocator sends n-1 params to GPU
4. GPU sends n+1 params to Data Allocator
5. Data Allocator sends n+1 params

Dataflow of CoTrain - CPU GPU Computations

Meanwhile, locally…

GPU:

A. Output gradient of n+1 loaded
B. Parameters of n loaded
C. Compute backward gradient

CPU:

A. Gradient received from GPU loaded
B. Parameters of n+1 loaded
C. Run Param Update stage

Parallelization: Requirements and Challenges

● Backward requires 3 things
○ Data is independent
○ ‘.. the training stage is separable…’
○ Resources are available

● Parallelization may break requirement 1

Solution to Parallelization Problems

● GPU creates gradients for CPU
● CPU uses a priority queue for gradients
● CPU waits until gradients enter queue
● Uses cuda.stream() for communication

Cause for Concern

● GPU and CPU wait on each other
● Reusable computations lost

Workaround

● Computations are saved when possible

Structure of CoTrain

● Contains 3 Threads
○ Training
○ Transfer
○ Param-Update

Evaluation: CPU, GPU, etc.

More Specifications

● Used with ChatGPT and Bert
● Used Stanford Question Answering Dataset
● Compared to PyTorch and DeepSpeed

Figure 7: Training Throughput

Figure 8: Throughput of PyTorch, DeepSpeed and Cotrain in Various
Batch Sizes

Figure 9: The Max Model Size for Different Batch Size

Figure 10: Model Convergence

Figure 11: The Idle Time in the Whole Step Time

