
“Resource utilization aware
job scheduling to mitigate
performance variability"

Presenters: Ridham Dholaria and Pedro Lopez

I. INTRODUCTION

● Performance variability lead to users requesting nodes

for longer times

● It affects the Operational efficiency of the HPC system

● With the fact that storage is getting cheaper, amount of

system-related data being logged has increased

considerably

● So, let’s use machine learning models to predict if a job in

the scheduler queue will experience variation

II. RELATED WORK

● Analyzing system monitoring data

● Studies looking at performance trends and root causes

● Existing work has looked at several ways to mitigate

performance variability

● Previously people have used machine learning to predict

how reliable user-provided run times are

III. DATA COLLECTION AND MODELING

● Intentionally delaying the scheduling of I/O-intensive jobs,

but why?

● We will require knowledge of system health and its

relationship with application performance

● Let’s predict future occurrences of variability with

statistical models.

Variability in the performance of proxy applications

IV. RUSH: RESOURCE UTILIZATION AWARE
SCHEDULER FOR HPC - (i)
Variability Predictor Module

● A machine learning model is trained offline on historical jobs and

system data

● The Variability Predictor Module uses system and control job data

to predict Variation

IV. RUSH: RESOURCE UTILIZATION AWARE
SCHEDULER FOR HPC- (ii)
Model-based Adaptive Job Scheduler

● The model-based adaptive job scheduler uses the models trained

by the variability predictor as input and maps jobs from the

queue to system resources.

● proposed scheduler utilizes a machine learning model to delay

the scheduling of jobs that will experience variation.

V. IMPLEMENTATION

● Quartz cluster at Lawrence Livermore National Laboratory

(LLNL)

● The scheduling algorithm considered predicted variation,

system load, and resource utilization to make decisions

● RUSH demonstrated its ability to effectively reduce variation

and maximum run time of applications while maintaining other

performance metrics in a real-world HPC environment

VI. EXPERIMENTAL SETUP
● To evaluate the effectiveness of the ML models and the RUSH scheduler in

mimicking typical workloads on an HPC system

● Tested the scheduling policy under various circumstances: different applications,

training datasets, and scaling parameters

● Used proxy applications and models trained on datasets containing runs from

multiple applications to assess the generalizability of the scheduler

● Makespan, reliability, resource utilization, and queue time were used to evaluate

the performance of the models and the scheduler

● Multiple trials of each experiment were conducted to account for system noise

VII. RESULTS

● RUSH successfully reduced variation and maximum run time of
applications compared to the baseline scheduling policy

● Demonstrated improvement in maximum run time, providing a
tighter upper limit on applications’ running time, which is beneficial
for end-users

● The scheduler effectively mitigated performance variability without
significantly impacting system throughput

● The results demonstrated the effectiveness of the RUSH system in
reducing variation, improving job performance, and maintaining
system throughput in a variety of experimental scenarios.

VII. RESULTS

VIII. CONCLUSION
● The RUSH system effectively mitigates performance variability, reduces

maximum run time of applications without significantly impacting

makespan or queue time, and improves job scheduling in HPC

environments

● The models accurately predict job run time variation, providing valuable

insights for the job scheduler to make intelligent scheduling decisions

● Demonstration of the system’s generalizability to applications not

included in the training data

● Future work could focus on further refining and optimizing the RUSH

system, exploring additional features and models, and conducting

experiments on larger-scale HPC systems to validate its scalability and

generalizability

THANK YOU!

Questions?

