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I. INTRODUCTION

● Performance variability lead to users requesting  nodes 

for longer times 

● It affects the Operational efficiency of the HPC system

● With the fact that storage is getting cheaper, amount of 

system-related data being logged has increased 

considerably

● So, let’s use machine learning models to predict if a job in 

the scheduler queue will experience variation



II. RELATED WORK

● Analyzing system monitoring data

● Studies looking at performance trends and root causes

● Existing work has looked at several ways to mitigate 

performance variability

● Previously people have used machine learning to predict 

how reliable user-provided run times are



III. DATA COLLECTION AND MODELING

● Intentionally delaying the scheduling of I/O-intensive jobs, 

but why?

● We will require knowledge of system health and its 

relationship with application performance

● Let’s predict future occurrences of variability with 

statistical models.



Variability in the performance of proxy applications



IV. RUSH: RESOURCE UTILIZATION AWARE 
SCHEDULER FOR HPC - (i)
Variability Predictor Module

● A machine learning model is trained offline on historical jobs and 

system data

● The Variability Predictor Module uses system and control job data 

to predict Variation 



IV. RUSH: RESOURCE UTILIZATION AWARE 
SCHEDULER FOR HPC- (ii)
Model-based Adaptive Job Scheduler

● The model-based adaptive job scheduler uses the models trained 

by the variability predictor as input and maps jobs from the 

queue to system resources.

● proposed scheduler utilizes a machine learning model to delay 

the scheduling of jobs that will experience variation.



V. IMPLEMENTATION

● Quartz cluster at Lawrence Livermore National Laboratory 

(LLNL)

● The scheduling algorithm considered  predicted variation, 

system load, and resource utilization to make decisions

● RUSH demonstrated its ability to effectively reduce variation 

and maximum run time of applications while maintaining other 

performance metrics in a real-world HPC environment



VI. EXPERIMENTAL SETUP
● To evaluate the effectiveness of the ML models and the RUSH scheduler in 

mimicking typical workloads on an HPC system

● Tested the scheduling policy under various circumstances: different applications, 

training datasets, and scaling parameters

● Used proxy applications and models trained on datasets containing runs from 

multiple applications to assess the generalizability of the scheduler

● Makespan, reliability, resource utilization, and queue time were used to evaluate 

the performance of the models and the scheduler

● Multiple trials of each experiment were conducted to account for system noise



VII. RESULTS

● RUSH successfully reduced variation and maximum run time of 
applications compared to the baseline scheduling policy

● Demonstrated improvement in maximum run time, providing a 
tighter upper limit on applications’ running time, which is beneficial 
for end-users

● The scheduler effectively mitigated performance variability without 
significantly impacting system throughput

● The results demonstrated the effectiveness of the RUSH system in 
reducing variation, improving job performance, and maintaining 
system throughput in a variety of experimental scenarios.



VII. RESULTS



VIII. CONCLUSION
● The RUSH system effectively mitigates performance variability, reduces 

maximum run time of applications without significantly impacting 

makespan or queue time, and improves job scheduling in HPC 

environments

● The models accurately predict job run time variation, providing valuable 

insights for the job scheduler to make intelligent scheduling decisions

● Demonstration of the system’s generalizability to applications not 

included in the training data

● Future work could focus on further refining and optimizing the RUSH 

system, exploring additional features and models, and conducting 

experiments on larger-scale HPC systems to validate its scalability and 

generalizability
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