
Variations of Conservative 
backfilling to improve fairness

Presented by
Lizzy Shakman & Oscar Gardella

http://faculty.knox.edu/dbunde/pubs/fairness.pdf
http://faculty.knox.edu/dbunde/pubs/fairness.pdf


Introduction



Introduction

Use PC and DC with FCFS priority order to improve fairness

Formalize “fairness” with two ideas:

1. Jobs should not be delayed by later-arriving jobs.
2. Jobs should get a proportional share of system resources.



Definitions of fairness



Fair start time

Jobs must not be delayed by other jobs backfilling (benign backfilling)

Strict Fair Start Time (Strict FST): The starting time a job gets if no jobs arrived after it.

Issue is inaccurate estimates can create strict FSTs that are not feasible.

Relaxed Fair Start Time (Relaxed FST): The starting time a job gets if no jobs arrived after 
it, but the job is also not allowed to backfill.

Avoids infeasible fair start time sets



Fig. 2. Instance where strict fair start times are infeasible. Anticipated schedule (a) before and (b) after arrival of 
job J3. The shaded region and the block of job J1 shows its actual length and estimated time respectively. Labels 
below the figures indicate the strict fair start time of each job.

Fair start time



Resource equality

Each active job deserves an equal share of system resources.

Two subtleties in dividing system resources equally:

1. No job’s fair share of the processors may exceed the number it wants to use.
2. Fair shares are based on the number of processors in use rather than the total system 

size.



Unweighted fair share

Weighted fair share

*At each job arrival or completion, we increase the fair share values to reflect the 
contribution since the last arrival or completion event.



Experimental results



Fig. 3. Traces used in simulations

Traces



Fig. 4. Improvement in average strict and relaxed unfairness of DC over Conservative. Not shown is LPC-EGEE 
for which all algorithms except DC produce average unfairness of 0; DC gives unfairness ∼ 0.102 for both (−∞ 
improvement).

Fair start time: DC



Fair start time: DC



Fig. 5. Profile after all jobs arrive in instance showing DC’s potential for unfairness. The shaded region and the 
block of each job show its actual length and estimated time respectively . Labels below the figures indicate the 
strict fair start time of each job.

Fair start time: DC



Fig. 6. Improvement in average strict and relaxed unfairness of EASY and PC over Conservative. Not shown are 
LPC-EGEE (all algorithms except DC produce unfairness of 0) and DAS2-fs3 for which PC gives no improvement and 
EASY produces “improvements” of −3, 010% and −2, 784% for strict and relaxed unfairness respectively.

Fair start time: PC



Fig. 7. Improvement in unweighted (top) and weighted (bottom) unfairness (fair share approach) over Conservative.

Unweighted fair share

Weighted fair share



Fig. 8. Improvement in average waiting time over Conservative.

Response time



Final thoughts



● Does fairness even really matter?
● Is it worth the small cost to runtime?
● Studying better time estimation tools should help improve backfilling

○ Both for speed and fairness

● This paper is important because it examines fairness, not just speed

Discussion


