Chic-sched: a HPC Placement-Group Scheduler on Hierarchical Topologies with Constraints

Presented by Saverio Scumaci

Problem

- New resource scheduler challenges on shared infrastructure like the Cloud
 - HPC and AI work-loads with application constraints need to remain efficient

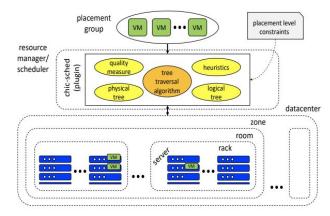


Fig. 1: Schematic view of placement group scheduling on a hierarchical topology

Chic-Sched

- Novel placement group scheduler
- Designed for distributed workloads on hierarchical topologies with constraints
- Efficiently places groups of virtual machines (VMs) while adhering to various constraints, such as packing and spreading requirements
- Operates without retries, enabling fast scheduling even for large VM groups

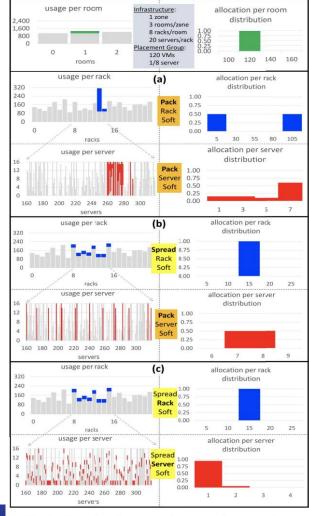
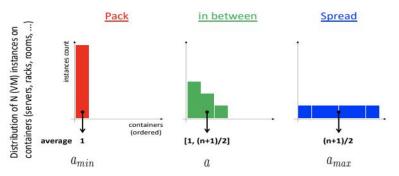
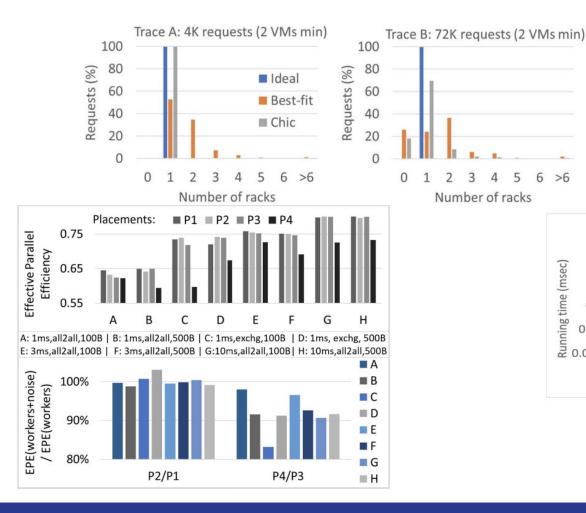
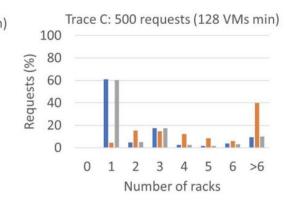


Fig. 3: Example: placement of groups with constraints.

Deviation Measure (δ)

- Provides a quantitative assessment of how well the placement satisfies the specified constraints
 - o range of [0, 1]
 - 0 signifies perfect placement
 - 1 indicates poor placement
- The specific formula for calculating δ depends on the type of level constraint being considered
 - The level constraint is "Pack," achieving a perfect Pack results in a deviation of 0.
 - The level constraint is "Spread," achieving a perfect Spread results in a deviation of 1


Fig. 4: Measure of deviation from Pack/Spread constraint.

$$\tilde{a} = \frac{a - a_{min}}{a_{max} - a_{min}}, \qquad \delta = \begin{cases} \tilde{a}, & Pack, \\ 1 - \tilde{a}, & Spread, \end{cases}$$

Results

- Chic-sched consistently outperforms other common placement algorithms,
 such as bestFit and worstFit, in terms of placement quality
- Demonstrates better placement locality and fewer placement failures,
 particularly when evaluated with real-world cloud traces and workloads
- exhibits linear scalability in relation to data center size and group size variations.
 - Even in large-scale data centers, chic-sched remains efficient, ensuring quick and effective placement of VMs.

>6

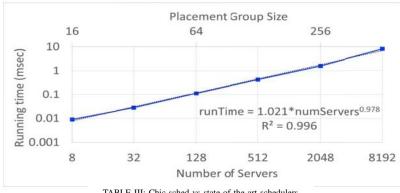


TABLE III: Chic-sched vs state-of-the-art schedulers

Scheduler	Pack	Spread	Unidimensional constraints	Multi-level constraints
Mesos [19]	✓	:=	0.5	(5)
YARN [20]	1	-	1.5	-
Borg [21]	1	✓	10	121
Medea [18]	1	1	✓	1-1
Kubernetes [22]	1	1	1.0	(5)
Quiet neighbor- hoods [23]	✓	-	✓	-
Chic-sched	1	1	✓	✓

Contributions

- Development and explanation of Chic-Shed Algorithm
- Performance evaluation of Chic-Shed
- new metric for measuring the quality of placements
 - \circ Deviation Measure(δ)